blob: 453161fcfe76bf1d62b11f9f68c0fa622f378ff1 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import sys
import os
import numpy as np
import mxnet as mx
from mxnet.test_utils import *
curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__)))
sys.path.insert(0, os.path.join(curr_path, '../unittest'))
from common import setup_module, with_seed
from mxnet.gluon import utils
def _get_model():
if not os.path.exists('model/Inception-7-symbol.json'):
download('http://data.mxnet.io/models/imagenet/inception-v3.tar.gz', dirname='model')
os.system("cd model; tar -xf inception-v3.tar.gz --strip-components 1")
def _dump_images(shape):
import skimage.io
import skimage.transform
img_list = []
for img in sorted(os.listdir('data/test_images/')):
img = skimage.io.imread('data/test_images/'+img)
short_egde = min(img.shape[:2])
yy = int((img.shape[0] - short_egde) / 2)
xx = int((img.shape[1] - short_egde) / 2)
img = img[yy : yy + short_egde, xx : xx + short_egde]
img = skimage.transform.resize(img, shape)
img_list.append(img)
imgs = np.asarray(img_list, dtype=np.float32).transpose((0, 3, 1, 2)) - 128
np.save('data/test_images_%d_%d.npy'%shape, imgs)
def _get_data(shape):
hash_test_img = "355e15800642286e7fe607d87c38aeeab085b0cc"
hash_inception_v3 = "91807dfdbd336eb3b265dd62c2408882462752b9"
utils.download("http://data.mxnet.io/data/test_images_%d_%d.npy" % (shape),
path="data/test_images_%d_%d.npy" % (shape),
sha1_hash=hash_test_img)
utils.download("http://data.mxnet.io/data/inception-v3-dump.npz",
path='data/inception-v3-dump.npz',
sha1_hash=hash_inception_v3)
@with_seed()
def test_consistency(dump=False):
shape = (299, 299)
_get_model()
_get_data(shape)
if dump:
_dump_images(shape)
gt = None
else:
gt = {n: mx.nd.array(a) for n, a in np.load('data/inception-v3-dump.npz').items()}
data = np.load('data/test_images_%d_%d.npy'%shape)
sym, arg_params, aux_params = mx.model.load_checkpoint('model/Inception-7', 1)
arg_params['data'] = data
arg_params['softmax_label'] = np.random.randint(low=1, high=1000, size=(data.shape[0],))
ctx_list = [{'ctx': mx.gpu(0), 'data': data.shape, 'type_dict': {'data': data.dtype}},
{'ctx': mx.cpu(0), 'data': data.shape, 'type_dict': {'data': data.dtype}}]
gt = check_consistency(sym, ctx_list, arg_params=arg_params, aux_params=aux_params,
tol=1e-3, grad_req='null', raise_on_err=False, ground_truth=gt)
if dump:
np.savez('data/inception-v3-dump.npz', **{n: a.asnumpy() for n, a in gt.items()})
if __name__ == '__main__':
test_consistency(False)