blob: b4b4dcaaae830929256723a27df9384d8eeda618 [file] [log] [blame]
#!/bin/bash
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# setup
export LD_LIBRARY_PATH=`pwd`/`dirname $0`/lib:/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export PYTHONPATH=`pwd`/`dirname $0`/python
# bc is required by sh2ju.sh
apt-get install bc
cd `pwd`/`dirname $0`
. sh2ju.sh
## clean last build log
juLogClean
if [ -f $(which nvidia-smi) ]; then
if [ $# -eq 1 ]; then
num_gpus=$1
else
num_gpus=$(nvidia-smi -L | grep "GPU" | wc -l)
fi
gpus=`seq 0 $((num_gpus-1)) | paste -sd ","`
device_arg="--gpus $gpus"
else
device_arg=""
fi
# build
build() {
make -C ../.. clean
make -C ../.. -j8
return $?
}
cp ../../make/config.mk ../..
cat >>../../config.mk <<EOF
USE_CUDA=1
USE_CUDA_PATH=/usr/local/cuda
USE_CUDNN=1
USE_DIST_KVSTORE=1
EOF
juLog -name=Build -error=Error build
# check if the final evaluation accuracy exceed the threshold
check_val() {
expected=$1
pass="Final validation >= $expected, PASS"
fail="Final validation < $expected, FAIL"
python ../../tools/parse_log.py log --format none | tail -n1 | \
awk "{ if (\$3~/^[.0-9]+$/ && \$3 > $expected) print \"$pass\"; else print \"$fail\"}"
rm -f log
}
example_dir=../../example/image-classification
# python: lenet + mnist
test_lenet() {
optimizers="adam sgd adagrad"
for optimizer in ${optimizers}; do
echo "OPTIMIZER: $optimizer"
if [ "$optimizer" == "adam" ]; then
learning_rate=0.0005
else
learning_rate=0.01
fi
desired_accuracy=0.98
python $example_dir/train_mnist.py --lr $learning_rate \
--network lenet --optimizer $optimizer --gpus $gpus \
--num-epochs 10 2>&1 | tee log
if [ $? -ne 0 ]; then
return $?
fi
check_val $desired_accuracy
done
}
juLog -name=Python.Lenet.Mnist -error=FAIL test_lenet
exit $errors