| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import argparse |
| import logging |
| import time |
| import mxnet as mx |
| import numpy as np |
| from get_data import get_movielens_iter, get_movielens_data |
| from model import matrix_fact_model_parallel_net |
| |
| |
| logging.basicConfig(level=logging.DEBUG) |
| |
| parser = argparse.ArgumentParser(description="Run model parallel version of matrix factorization", |
| formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
| parser.add_argument('--num-epoch', type=int, default=3, |
| help='number of epochs to train') |
| parser.add_argument('--batch-size', type=int, default=256, |
| help='number of examples per batch') |
| parser.add_argument('--print-every', type=int, default=100, |
| help='logging interval') |
| parser.add_argument('--factor-size', type=int, default=128, |
| help="the factor size of the embedding operation") |
| parser.add_argument('--num-gpus', type=int, default=2, |
| help="number of gpus to use") |
| |
| MOVIELENS = { |
| 'dataset': 'ml-10m', |
| 'train': './ml-10M100K/r1.train', |
| 'val': './ml-10M100K/r1.test', |
| 'max_user': 71569, |
| 'max_movie': 65135, |
| } |
| |
| if __name__ == '__main__': |
| head = '%(asctime)-15s %(message)s' |
| logging.basicConfig(level=logging.INFO, format=head) |
| |
| # arg parser |
| args = parser.parse_args() |
| logging.info(args) |
| num_epoch = args.num_epoch |
| batch_size = args.batch_size |
| optimizer = 'sgd' |
| factor_size = args.factor_size |
| print_every = args.print_every |
| num_gpus = args.num_gpus |
| |
| momentum = 0.9 |
| learning_rate = 0.1 |
| |
| # prepare dataset and iterators |
| max_user = MOVIELENS['max_user'] |
| max_movies = MOVIELENS['max_movie'] |
| get_movielens_data(MOVIELENS['dataset']) |
| train_iter = get_movielens_iter(MOVIELENS['train'], batch_size) |
| val_iter = get_movielens_iter(MOVIELENS['val'], batch_size) |
| |
| # construct the model |
| net = matrix_fact_model_parallel_net(factor_size, factor_size, max_user, max_movies) |
| |
| # construct the module |
| # map the ctx_group attribute to the context assignment |
| group2ctxs={'dev1':[mx.cpu()]*num_gpus, 'dev2':[mx.gpu(i) for i in range(num_gpus)]} |
| |
| # Creating a module by passing group2ctxs attribute which maps |
| # the ctx_group attribute to the context assignment |
| mod = mx.module.Module(symbol=net, context=[mx.cpu()]*num_gpus, data_names=['user', 'item'], |
| label_names=['score'], group2ctxs=group2ctxs) |
| |
| # the initializer used to initialize the parameters |
| initializer = mx.init.Xavier(factor_type="in", magnitude=2.34) |
| |
| # the parameters for the optimizer constructor |
| optimizer_params = { |
| 'learning_rate': learning_rate, |
| 'wd': 1e-4, |
| 'momentum': momentum, |
| 'rescale_grad': 1.0/batch_size} |
| |
| # use MSE as the metric |
| metric = mx.metric.create(['MSE']) |
| |
| speedometer = mx.callback.Speedometer(batch_size, print_every) |
| |
| # start training |
| mod.fit(train_iter, |
| val_iter, |
| eval_metric = metric, |
| num_epoch = num_epoch, |
| optimizer = optimizer, |
| optimizer_params = optimizer_params, |
| initializer = initializer, |
| batch_end_callback = speedometer) |