blob: 5c462a727e25bb5bd1a4ad5c2afe60c1e2cc954c [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: skip-file
import mxnet as mx
import numpy as np
from common import models
from mxnet import autograd
from mxnet.test_utils import assert_almost_equal
def test_infer_multiout_op():
data = mx.nd.arange(16, dtype=np.float64).reshape((4, 4))
data.attach_grad()
with autograd.record():
y = mx.nd.split(data, axis=0, num_outputs=2)
y[0].backward()
assert data.grad.dtype == np.float64
mx.nd.waitall()
def test_infer_multiout_op2():
def test_func(a):
q, l = mx.nd.linalg.gelqf(a)
return mx.nd.sum(l)
data32 = mx.nd.random.normal(shape=(2, 3), ctx=mx.cpu(), dtype=np.float32)
data32.attach_grad()
with autograd.record():
test32 = test_func(data32)
test32.backward()
data64 = mx.nd.Cast(data32, dtype=np.float64)
data64.attach_grad()
with autograd.record():
test64 = test_func(data64)
test64.backward()
assert_almost_equal(data64.grad.asnumpy(), data32.grad.asnumpy(), atol=1e-5, rtol=1e-5)