| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import pytest |
| import numpy as np |
| import mxnet as mx |
| from mxnet.gluon import HybridBlock |
| |
| @mx.util.use_np |
| def test_getitem_hybridized(): |
| class picking_np(HybridBlock): |
| def __init__(self, **kwargs): |
| super(picking_np, self).__init__(**kwargs) |
| |
| def forward(self, sequence, pick_ids): |
| """ |
| new implementation in deep numpy |
| """ |
| idx_arange = mx.npx.arange_like(pick_ids.reshape((-1, )), axis=0) |
| batch_idx = mx.np.floor(idx_arange / 2).astype(np.int32) |
| encoded = sequence[batch_idx, pick_ids.reshape((-1,))] |
| encoded = mx.npx.reshape_like(encoded, pick_ids, lhs_begin=-2, lhs_end=-1, rhs_begin=0) |
| return encoded |
| |
| sequence = mx.np.array(np.random.normal(0, 1, (8, 32, 768)), dtype=np.float32) |
| # pick_ids: [batch_size, picked_index] |
| pick_ids = mx.np.random.randint(0, 32, (8,2), dtype=np.int32) |
| |
| picker_np = picking_np() |
| seq_np = sequence |
| np_output = picker_np(seq_np, pick_ids) |
| seq_np.attach_grad() |
| with mx.autograd.record(): |
| z = picker_np(seq_np, pick_ids) |
| z.backward() |
| |
| picker_np.initialize() |
| picker_np.hybridize() |
| nd_output_hybridized = picker_np(sequence, pick_ids) |
| seq_np_hybridized = sequence |
| seq_np_hybridized.attach_grad() |
| with mx.autograd.record(): |
| z_hybridized = picker_np(seq_np_hybridized, pick_ids.as_np_ndarray()) |
| z_hybridized.backward() |
| |
| mx.test_utils.assert_almost_equal(nd_output_hybridized.asnumpy(), np_output.asnumpy()) |
| mx.test_utils.assert_almost_equal(seq_np.grad.asnumpy(), seq_np_hybridized.grad.asnumpy()) |
| |
| def test_getitem_hybridized_no_F_argument(): |
| class picking_np(HybridBlock): |
| def __init__(self, **kwargs): |
| super(picking_np, self).__init__(**kwargs) |
| def forward(self, sequence, pick_ids): |
| """ |
| new implementation in deep numpy |
| """ |
| idx_arange = mx.npx.arange_like(pick_ids.reshape((-1, )), axis=0) |
| batch_idx = np.floor(idx_arange / 2).astype(np.int32) |
| |
| encoded = sequence[batch_idx, pick_ids.reshape((-1,))] |
| encoded = mx.npx.reshape_like(encoded, pick_ids, lhs_begin=-2, lhs_end=-1, rhs_begin=0) |
| return encoded |
| |
| sequence = mx.nd.array(np.random.normal(0, 1, (8, 32, 768)), dtype=np.float32) |
| # pick_ids: [batch_size, picked_index] |
| pick_ids = mx.nd.random.randint(0, 32, (8,2), dtype=np.int32) |
| |
| mx.npx.set_np() |
| picker_np = picking_np() |
| seq_np = sequence.as_np_ndarray() |
| np_output = picker_np(seq_np, pick_ids.as_np_ndarray()) |
| seq_np.attach_grad() |
| with mx.autograd.record(): |
| z = picker_np(seq_np, pick_ids.as_np_ndarray()) |
| z.backward() |
| |
| picker_np.initialize() |
| picker_np.hybridize() |
| nd_output_hybridized = picker_np(sequence.as_np_ndarray(), pick_ids.as_np_ndarray()) |
| seq_np_hybridized = sequence.as_np_ndarray() |
| seq_np_hybridized.attach_grad() |
| with mx.autograd.record(): |
| z_hybridized = picker_np(seq_np_hybridized, pick_ids.as_np_ndarray()) |
| z_hybridized.backward() |
| mx.npx.reset_np() |
| |
| mx.test_utils.assert_almost_equal(nd_output_hybridized.asnumpy(), np_output.asnumpy()) |
| mx.test_utils.assert_almost_equal(z_hybridized.asnumpy(), np_output.asnumpy()) |
| mx.test_utils.assert_almost_equal(seq_np.grad.asnumpy(), seq_np_hybridized.grad.asnumpy()) |