blob: 8f02737e2d126907de0ed30eee539a3489468ae2 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import mxnet as mx
import numpy as np
from mxnet import nd
def test_hawkesll_output_ok():
T, N, K = 4, 4, 3
mu = nd.array([1.5, 2.0, 3.0]).tile((N, 1))
alpha = nd.array([0.2, 0.3, 0.4])
beta = nd.array([1.0, 2.0, 3.0])
lags = nd.array([[6, 7, 8, 9], [1, 2, 3, 4], [3, 4, 5, 6], [8, 9, 10, 11]])
marks = nd.zeros((N, T)).astype(np.int32)
states = nd.zeros((N, K))
valid_length = nd.array([1, 2, 3, 4])
max_time = nd.ones((N,)) * 100.0
A = nd.contrib.hawkesll(
mu, alpha, beta, states, lags, marks, valid_length, max_time
)
assert np.allclose(
np.array([-649.79453489, -649.57118596, -649.38025115, -649.17811484]),
A[0].asnumpy(),
)
def test_hawkesll_output_multivariate_ok():
T, N, K = 9, 2, 3
mu = nd.array([1.5, 2.0, 3.0])
alpha = nd.array([0.2, 0.3, 0.4])
beta = nd.array([2.0, 2.0, 2.0])
lags = nd.array([[6, 7, 8, 9, 3, 2, 5, 1, 7], [1, 2, 3, 4, 2, 1, 2, 1, 4]])
marks = nd.array([[0, 1, 2, 1, 0, 2, 1, 0, 2], [1, 2, 0, 0, 0, 2, 2, 1, 0]]).astype(
np.int32
)
states = nd.zeros((N, K))
valid_length = nd.array([7, 9])
max_time = nd.ones((N,)) * 100.0
A = nd.contrib.hawkesll(
mu.tile((N, 1)), alpha, beta, states, lags, marks, valid_length, max_time
)
assert np.allclose(np.array([-647.01240372, -646.28617272]), A[0].asnumpy())
def test_hawkesll_backward_correct():
ctx = mx.cpu()
mu = nd.array([1.5, 2.0, 3.0])
alpha = nd.array([0.2, 0.3, 0.4])
beta = nd.array([2.0, 2.0, 2.0])
T, N, K = 9, 2, 3
lags = nd.array([[6, 7, 8, 9, 3, 2, 5, 1, 7], [1, 2, 3, 4, 2, 1, 2, 1, 4]])
marks = nd.array([[0, 0, 0, 1, 0, 0, 1, 2, 0], [1, 2, 0, 0, 0, 2, 2, 1, 0]]).astype(
np.int32
)
valid_length = nd.array([9, 9])
states = nd.zeros((N, K))
max_time = nd.ones((N,)) * 100.0
mu.attach_grad()
alpha.attach_grad()
beta.attach_grad()
with mx.autograd.record():
A, _ = nd.contrib.hawkesll(
mu.tile((N, 1)), alpha, beta, states, lags, marks, valid_length, max_time
)
A.backward()
dmu, dalpha, dbeta = (
np.array([-193.33987481, -198.0, -198.66828681]),
np.array([-9.95093892, -4.0, -3.98784892]),
np.array([-1.49052169e-02, -5.87469511e-09, -7.29065224e-03]),
)
assert np.allclose(dmu, mu.grad.asnumpy())
assert np.allclose(dalpha, alpha.grad.asnumpy())
assert np.allclose(dbeta, beta.grad.asnumpy())
def test_hawkesll_forward_single_mark():
_dtype = np.float32
mu = nd.array([1.5]).astype(_dtype)
alpha = nd.array([0.2]).astype(_dtype)
beta = nd.array([1.0]).astype(_dtype)
T, N, K = 7, 1, 1
lags = nd.array([[6, 7, 8, 3, 2, 1, 7]]).astype(_dtype)
marks = nd.array([[0, 0, 0, 0, 0, 0, 0]]).astype(np.int32)
valid_length = nd.array([7]).astype(_dtype)
states = nd.zeros((N, K)).astype(_dtype)
max_time = nd.ones((N,)).astype(_dtype) * 100
A, _ = nd.contrib.hawkesll(
mu.tile((N, 1)), alpha, beta, states, lags, marks, valid_length, max_time
)
assert np.allclose(A[0].asscalar(), -148.4815)
def test_hawkesll_backward_single_mark():
_dtype = np.float32
mu = nd.array([1.5]).astype(_dtype)
alpha = nd.array([0.2]).astype(_dtype)
beta = nd.array([1.0]).astype(_dtype)
T, N, K = 7, 1, 1
lags = nd.array([[6, 7, 8, 3, 2, 1, 7]]).astype(_dtype)
marks = nd.array([[0, 0, 0, 0, 0, 0, 0]]).astype(np.int32)
valid_length = nd.array([7]).astype(_dtype)
states = nd.zeros((N, K)).astype(_dtype)
max_time = nd.ones((N,)).astype(_dtype) * 40
mu.attach_grad()
beta.attach_grad()
with mx.autograd.record():
A, _ = nd.contrib.hawkesll(
mu.tile((N, 1)), alpha, beta, states, lags, marks, valid_length, max_time
)
A.backward()
assert np.allclose(beta.grad.asnumpy().sum(), -0.05371582)