| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import mxnet as mx |
| import numpy as np |
| import onnxruntime |
| import pytest |
| import shutil |
| from mxnet import gluon |
| from mxnet.test_utils import assert_almost_equal |
| |
| @pytest.mark.skip(reason='Gluon no long support v1.x models since https://github.com/apache/incubator-mxnet/pull/20262') |
| def test_resnet50_v2(tmp_path): |
| try: |
| ctx = mx.cpu() |
| model = gluon.model_zoo.vision.resnet50_v2(pretrained=True, ctx=ctx) |
| BS = 1 |
| inp = mx.random.uniform(0, 1, (1, 3, 224, 224)) |
| model.hybridize(static_alloc=True) |
| out = model(inp) |
| |
| prefix = f"{tmp_path}/resnet50" |
| model.export(prefix) |
| |
| sym_file = f"{prefix}-symbol.json" |
| params_file = f"{prefix}-0000.params" |
| onnx_file = f"{prefix}.onnx" |
| |
| dynamic_input_shapes = [('batch', 3, 224, 224)] |
| input_shapes = [(1, 3, 224, 224)] |
| input_types = [np.float32] |
| |
| converted_model_path = mx.onnx.export_model(sym_file, params_file, input_shapes, |
| input_types, onnx_file, |
| dynamic=True, |
| dynamic_input_shapes=dynamic_input_shapes) |
| |
| ses_opt = onnxruntime.SessionOptions() |
| ses_opt.log_severity_level = 3 |
| session = onnxruntime.InferenceSession(onnx_file, ses_opt) |
| |
| BS = 10 |
| inp = mx.random.uniform(0, 1, (1, 3, 224, 224)) |
| |
| mx_out = model(inp) |
| onnx_inputs = [inp] |
| input_dict = dict((session.get_inputs()[i].name, onnx_inputs[i].asnumpy()) |
| for i in range(len(onnx_inputs))) |
| on_out = session.run(None, input_dict) |
| |
| assert_almost_equal(mx_out, on_out, rtol=0.001, atol=0.01) |
| finally: |
| shutil.rmtree(tmp_path) |