blob: 1c42723b64597e2ac7a10221464fd7d04918dc52 [file] [log] [blame]
# pylint: disable=C0302
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=unused-argument
"""Namespace for numpy operators used in Gluon dispatched by F=ndarray."""
import numpy as _np
from ...base import numeric_types, integer_types
from ...util import _sanity_check_params, set_module
from ...util import wrap_np_unary_func, wrap_np_binary_func
from ...util import is_np_default_dtype, dtype_from_number
from ...device import current_device
from . import _internal as _npi
from . import _api_internal
from ..ndarray import NDArray, get_dtype_name
__all__ = ['shape', 'zeros', 'zeros_like', 'ones', 'ones_like', 'full', 'full_like', 'empty_like', 'invert', 'delete',
'add', 'broadcast_to', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'fmod',
'power', 'bitwise_not', 'trace', 'transpose', 'copy', 'moveaxis', 'reshape', 'dot',
'arctan2', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'sqrt', 'cbrt', 'abs', 'insert', 'fabs',
'absolute', 'exp', 'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log', 'degrees', 'log2', 'matmul',
'log1p', 'rint', 'radians', 'reciprocal', 'square', 'negative', 'fix', 'ceil', 'floor', 'histogram',
'trunc', 'logical_not', 'arcsinh', 'arccosh', 'arctanh', 'argsort', 'all', 'any', 'sort',
'tensordot', 'eye', 'linspace', 'median', 'tril_indices', 'triu_indices_from', 'triu_indices',
'logspace', 'expand_dims', 'tile', 'arange', 'array_split', 'split', 'hsplit', 'vsplit', 'dsplit',
'concatenate', 'append', 'stack', 'vstack', 'row_stack', 'column_stack', 'hstack', 'dstack',
'average', 'mean', 'maximum', 'fmax', 'minimum', 'fmin', 'around', 'round', 'round_', 'flatnonzero',
'max', 'min', 'amax', 'amin', 'logical_and', 'logical_or', 'logical_xor',
'swapaxes', 'clip', 'argmax', 'argmin', 'std', 'var', 'indices', 'copysign', 'ravel', 'unravel_index',
'diag_indices_from', 'hanning', 'hamming', 'blackman', 'flip', 'flipud', 'fliplr',
'hypot', 'bitwise_and', 'bitwise_xor', 'bitwise_or', 'rad2deg', 'deg2rad', 'unique', 'lcm', 'gcd',
'tril', 'triu', 'tri', 'identity', 'take', 'ldexp', 'vdot', 'inner', 'outer', 'cross', 'kron',
'equal', 'not_equal', 'greater', 'less', 'greater_equal', 'less_equal', 'roll', 'rot90', 'einsum',
'true_divide', 'nonzero', 'quantile', 'percentile', 'shares_memory', 'may_share_memory', 'interp',
'diff', 'ediff1d', 'resize', 'polyval', 'nan_to_num', 'isnan', 'isinf', 'isposinf', 'isneginf', 'isfinite',
'atleast_1d', 'atleast_2d', 'atleast_3d', 'fill_diagonal', 'squeeze',
'where', 'bincount', 'rollaxis', 'diagflat', 'repeat', 'prod', 'pad', 'cumsum', 'sum', 'diag', 'diagonal',
'positive', 'logaddexp', 'floor_divide', 'bitwise_left_shift', 'bitwise_right_shift']
@set_module('mxnet.ndarray.numpy')
def shape(a):
"""
Return the shape of an array.
Parameters
----------
a : array_like
Input array.
Returns
-------
shape : tuple of ints
The elements of the shape tuple give the lengths of the
corresponding array dimensions.
See Also
--------
ndarray.shape : Equivalent array method.
Examples
--------
>>> np.shape(np.eye(3))
(3, 3)
>>> np.shape([[1, 2]])
(1, 2)
>>> np.shape([0])
(1,)
>>> np.shape(0)
()
"""
return a.shape
@set_module('mxnet.ndarray.numpy')
def zeros(shape, dtype=None, order='C', device=None): # pylint: disable=redefined-outer-name
"""Return a new array of given shape and type, filled with zeros.
This function currently only supports storing multi-dimensional data
in row-major (C-style).
Parameters
----------
shape : int or tuple of int
The shape of the empty array.
dtype : str or numpy.dtype, optional
An optional value type.
- When npx.is_np_default_dtype() returns False, default dtype is float32;
- When npx.is_np_default_dtype() returns True, default dtype is float64.
Note that this behavior is different from NumPy's `zeros` function where `float64`
is the default value, here we can set 'float32' or 'float64' as your default dtype,
because `float32` is considered as the default data type in deep learning.
order : {'C'}, optional, default: 'C'
How to store multi-dimensional data in memory, currently only row-major
(C-style) is supported.
device : Device, optional
Device context on which the memory is allocated. Default is
`mxnet.device.current_device()`.
Returns
-------
out : ndarray
Array of zeros with the given shape, dtype, and device.
"""
if order != 'C':
raise NotImplementedError
# If the following code (4 lines) regarding device is removed
# np.zeros((3, 4)) can be as fast as 4.96 us
if device is None:
device = str(current_device())
else:
device = str(device)
if dtype is not None and not isinstance(dtype, str):
dtype = get_dtype_name(dtype)
return _api_internal.zeros(shape, dtype, device)
@set_module('mxnet.ndarray.numpy')
def ones(shape, dtype=None, order='C', device=None): # pylint: disable=redefined-outer-name
"""Return a new array of given shape and type, filled with ones.
This function currently only supports storing multi-dimensional data
in row-major (C-style).
Parameters
----------
shape : int or tuple of int
The shape of the empty array.
dtype : str or numpy.dtype, optional
An optional value type.
- When npx.is_np_default_dtype() returns False, default dtype is float32;
- When npx.is_np_default_dtype() returns True, default dtype is float64.
Note that this behavior is different from NumPy's `ones` function where
`float64` is the default value.
order : {'C'}, optional, default: 'C'
How to store multi-dimensional data in memory, currently only row-major
(C-style) is supported.
device : Device, optional
Device context on which the memory is allocated. Default is
`mxnet.device.current_device()`.
Returns
-------
out : ndarray
Array of ones with the given shape, dtype, and device.
"""
if order != 'C':
raise NotImplementedError
if device is None:
device = str(current_device())
else:
device = str(device)
if dtype is not None and not isinstance(dtype, str):
dtype = get_dtype_name(dtype)
return _api_internal.ones(shape, dtype, device)
# pylint: disable=too-many-arguments, redefined-outer-name
@set_module('mxnet.ndarray.numpy')
def zeros_like(a, dtype=None, order='C', device=None, out=None):
"""
Return an array of zeros with the same shape and type as a given array.
Parameters
----------
a : ndarray
The shape and data-type of `a` define these same attributes of
the returned array.
dtype : data-type, optional
Overrides the data type of the result.
Temporarily do not support boolean type.
order : {'C'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory. Currently only supports C order.
device : Device, optional
Device context on which the memory is allocated. Default is
`mxnet.device.current_device()`.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.
Returns
-------
out : ndarray
Array of zeros with the same shape and type as a.
See Also
--------
empty_like : Return an empty array with shape and type of input.
ones_like : Return an array of ones with shape and type of input.
zeros_like : Return an array of zeros with shape and type of input.
full : Return a new array of given shape filled with value.
Examples
--------
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0., 1., 2.],
[3., 4., 5.]])
>>> np.zeros_like(x)
array([[0., 0., 0.],
[0., 0., 0.]])
>>> np.zeros_like(x, int)
array([[0, 0, 0],
[0, 0, 0]], dtype=int64)
>>> y = np.arange(3, dtype=float)
>>> y
array([0., 1., 2.], dtype=float64)
>>> np.zeros_like(y)
array([0., 0., 0.], dtype=float64)
"""
if order != 'C':
raise NotImplementedError
return full_like(a, 0, dtype=dtype, order=order, device=device, out=out)
@set_module('mxnet.ndarray.numpy')
def ones_like(a, dtype=None, order='C', device=None, out=None):
"""
Return an array of ones with the same shape and type as a given array.
Parameters
----------
a : ndarray
The shape and data-type of `a` define these same attributes of
the returned array.
dtype : data-type, optional
Overrides the data type of the result.
Temporarily do not support boolean type.
order : {'C'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory. Currently only supports C order.
device : Device, optional
Device context on which the memory is allocated. Default is
`mxnet.device.current_device()`.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.
Returns
-------
out : ndarray
Array of ones with the same shape and type as a.
See Also
--------
empty_like : Return an empty array with shape and type of input.
zeros_like : Return an array of zeros with shape and type of input.
full_like : Return a new array with shape of input filled with value.
ones : Return a new array setting values to one.
Examples
--------
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0., 1., 2.],
[3., 4., 5.]])
>>> np.ones_like(x)
array([[1., 1., 1.],
[1., 1., 1.]])
>>> np.ones_like(x, int)
array([[1, 1, 1],
[1, 1, 1]], dtype=int64)
>>> y = np.arange(3, dtype=float)
>>> y
array([0., 1., 2.], dtype=float64)
>>> np.ones_like(y)
array([1., 1., 1.], dtype=float64)
"""
return full_like(a, 1, dtype=dtype, order=order, device=device, out=out)
@set_module('mxnet.ndarray.numpy')
def broadcast_to(array, shape):
"""
Broadcast an array to a new shape.
Parameters
----------
array : ndarray or scalar
The array to broadcast.
shape : tuple
The shape of the desired array.
Returns
-------
broadcast : array
A readonly view on the original array with the given shape. It is
typically not contiguous. Furthermore, more than one element of a
broadcasted array may refer to a single memory location.
Raises
------
MXNetError
If the array is not compatible with the new shape according to NumPy's
broadcasting rules.
"""
if _np.isscalar(array):
return full(shape, array)
return _api_internal.broadcast_to(array, shape)
@set_module('mxnet.ndarray.numpy')
def full(shape, fill_value, dtype=None, order='C', device=None, out=None): # pylint: disable=too-many-arguments
"""
Return a new array of given shape and type, filled with `fill_value`.
Parameters
----------
shape : int or sequence of ints
Shape of the new array, e.g., ``(2, 3)`` or ``2``.
fill_value : scalar or ndarray
Fill value.
dtype : data-type, optional
If dtype is None, the output array data type must be inferred from fill_value.
If it’s an int, the output array dtype must be the default integer dtype;
If it’s a float, then the output array dtype must be the default floating-point data type;
If it’s a bool then the output array must have boolean dtype. Default: None.
order : {'C'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory. Currently only supports C order.
device : Device, optional
Device context on which the memory is allocated. Default is
`mxnet.device.current_device()`.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.
Returns
-------
out : ndarray
Array of `fill_value` with the given shape, dtype, and order.
If `fill_value` is an ndarray, out will have the same device as `fill_value`
regardless of the provided `device`.
Notes
-----
This function differs from the original `numpy.full
https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html`_ in
the following way(s):
- Have an additional `device` argument to specify the device
- Have an additional `out` argument
- Currently does not support `order` selection
See Also
--------
empty : Return a new uninitialized array.
ones : Return a new array setting values to one.
zeros : Return a new array setting values to zero.
Examples
--------
>>> np.full((2, 2), 10)
array([[10., 10.],
[10., 10.]])
>>> np.full((2, 2), 2, dtype=np.int32, device=mx.cpu(0))
array([[2, 2],
[2, 2]], dtype=int32)
"""
if order != 'C':
raise NotImplementedError
if isinstance(fill_value, NDArray):
if dtype is None:
ret = broadcast_to(fill_value, shape)
else:
ret = broadcast_to(fill_value, shape).astype(dtype)
return ret
if device is None:
device = str(current_device())
else:
device = str(device)
if isinstance(fill_value, bool):
fill_value = int(fill_value)
dtype = _np.bool if dtype is None else dtype
elif isinstance(fill_value, numeric_types):
if dtype is None or dtype is float:
dtype = dtype_from_number(fill_value)
if dtype is not None and not isinstance(dtype, str):
dtype = get_dtype_name(dtype)
return _api_internal.full(shape, dtype, fill_value, device, out)
# pylint: enable=too-many-arguments, redefined-outer-name
@set_module('mxnet.ndarray.numpy')
def full_like(a, fill_value, dtype=None, order='C', device=None, out=None): # pylint: disable=too-many-arguments
"""
Return a full array with the same shape and type as a given array.
Parameters
----------
a : ndarray
The shape and data-type of `a` define these same attributes of
the returned array.
fill_value : scalar
Fill value.
dtype : data-type, optional
Overrides the data type of the result.
Temporarily do not support boolean type.
order : {'C'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory. Currently only supports C order.
device : Device, optional
Device context on which the memory is allocated. Default is
`mxnet.device.current_device()`.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.
Returns
-------
out : ndarray
Array of `fill_value` with the same shape and type as `a`.
See Also
--------
empty_like : Return an empty array with shape and type of input.
ones_like : Return an array of ones with shape and type of input.
zeros_like : Return an array of zeros with shape and type of input.
full : Return a new array of given shape filled with value.
Examples
--------
>>> x = np.arange(6, dtype=int)
>>> np.full_like(x, 1)
array([1, 1, 1, 1, 1, 1], dtype=int64)
>>> np.full_like(x, 0.1)
array([0, 0, 0, 0, 0, 0], dtype=int64)
>>> np.full_like(x, 0.1, dtype=np.float64)
array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1], dtype=float64)
>>> np.full_like(x, np.nan, dtype=np.double)
array([nan, nan, nan, nan, nan, nan], dtype=float64)
>>> y = np.arange(6, dtype=np.float32)
>>> np.full_like(y, 0.1)
array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
"""
if order != 'C':
raise NotImplementedError
if isinstance(fill_value, bool):
fill_value = int(fill_value)
if device is None:
device = str(current_device())
else:
device = str(device)
if dtype is not None and not isinstance(dtype, str):
dtype = get_dtype_name(dtype)
return _api_internal.full_like(a, fill_value, dtype, device, out)
@set_module('mxnet.ndarray.numpy')
def empty_like(prototype, dtype=None, order='C', subok=False, shape=None): # pylint: disable=W0621
"""
Return a new array with the same shape and type as a given array.
Parameters
----------
prototype : ndarray
The shape and data-type of `prototype` define these same attributes
of the returned array.
dtype : data-type, optional
Overrides the data type of the result.
order : {'C'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory. Currently only supports C order.
subok : {False}, optional
If True, then the newly created array will use the sub-class
type of 'a', otherwise it will be a base-class array. Defaults
to False.
(Only support False at this moment)
shape : int or sequence of ints, optional.
Overrides the shape of the result. If order='K' and the number of
dimensions is unchanged, will try to keep order, otherwise,
order='C' is implied.
(Not supported at this moment)
Returns
-------
out : ndarray
Array of uninitialized (arbitrary) data with the same
shape and type as `prototype`.
See Also
--------
ones_like : Return an array of ones with shape and type of input.
zeros_like : Return an array of zeros with shape and type of input.
full_like : Return a new array with shape of input filled with value.
empty : Return a new uninitialized array.
Notes
-----
This function does *not* initialize the returned array; to do that use
`zeros_like` or `ones_like` instead. It may be marginally faster than
the functions that do set the array values.
Examples
--------
>>> a = np.array([[1,2,3], [4,5,6]])
>>> np.empty_like(a)
array([[-5764607523034234880, -2305834244544065442, 4563075075], # uninitialized
[ 4567052944, -5764607523034234880, 844424930131968]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
>>> np.empty_like(a)
array([[4.9e-324, 9.9e-324, 1.5e-323], # uninitialized
[2.0e-323, 2.5e-323, 3.0e-323]])
"""
dtype_list = {_np.float16: 'float16', _np.float32: 'float32', _np.float64: 'float64',
float: 'float64', _np.int8: 'int8', _np.int16: 'int16', _np.int32: 'int32',
_np.int64: 'int64', int:'int64', _np.uint8: 'uint8', _np.uint16: 'uint16',
_np.uint32: 'uint32', _np.uint64: 'uint64', _np.bool: 'bool',
_np.bool_: 'bool_', bool: 'bool', None: 'None'}
if order != 'C':
raise NotImplementedError("Only support C-order at this moment")
if subok:
raise NotImplementedError("Creating array by using sub-class is not supported at this moment")
if shape is not None:
raise NotImplementedError("Assigning new shape is not supported at this moment")
try:
dtype = dtype if isinstance(dtype, str) else dtype_list[dtype]
except:
raise NotImplementedError("Do not support this dtype at this moment")
return _npi.empty_like_fallback(prototype, dtype=dtype, order=order, subok=subok, shape=shape)
@set_module('mxnet.ndarray.numpy')
def arange(start, stop=None, step=1, dtype=None, device=None):
"""Return evenly spaced values within a given interval.
Values are generated within the half-open interval ``[start, stop)``
(in other words, the interval including `start` but excluding `stop`).
For integer arguments the function is equivalent to the Python built-in
`range` function, but returns an ndarray rather than a list.
Parameters
----------
start : number, optional
Start of interval. The interval includes this value. The default
start value is 0.
stop : number
End of interval. The interval does not include this value, except
in some cases where `step` is not an integer and floating point
round-off affects the length of `out`.
step : number, optional
Spacing between values. For any output `out`, this is the distance
between two adjacent values, ``out[i+1] - out[i]``. The default
step size is 1. If `step` is specified as a position argument,
`start` must also be given.
dtype : dtype
The type of the output array.
- When npx.is_np_default_dtype() returns False, default dtype is float32;
- When npx.is_np_default_dtype() returns True, default dtype is float64.
Returns
-------
arange : ndarray
Array of evenly spaced values.
For floating point arguments, the length of the result is
``ceil((stop - start)/step)``. Because of floating point overflow,
this rule may result in the last element of `out` being greater
than `stop`.
"""
if dtype is not None and not isinstance(dtype, str):
dtype = get_dtype_name(dtype)
if device is None:
device = str(current_device())
else:
device = str(device)
if stop is None:
stop = start
start = 0
if step is None:
step = 1
if start is None and stop is None:
raise ValueError('start and stop cannot be both None')
if step == 0:
raise ZeroDivisionError('step cannot be 0')
return _api_internal.arange(start, stop, step, dtype, device)
@set_module('mxnet.ndarray.numpy')
def identity(n, dtype=None, device=None):
"""
Return the identity array.
The identity array is a square array with ones on
the main diagonal.
Parameters
----------
n : int
Number of rows (and columns) in `n` x `n` output.
dtype : data-type, optional
Data-type of the output.
- When npx.is_np_default_dtype() returns False, default dtype is float32;
- When npx.is_np_default_dtype() returns True, default dtype is float64.
device : Device, optional
Device context on which the memory is allocated. Default is
`mxnet.device.current_device()`.
Returns
-------
out : ndarray
`n` x `n` array with its main diagonal set to one,
and all other elements 0.
Examples
--------
>>> np.identity(3)
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
"""
if not isinstance(n, int):
raise TypeError("Input 'n' should be an integer")
if n < 0:
raise ValueError("Input 'n' cannot be negative")
if device is None:
device = str(current_device())
else:
device = str(device)
shape = (n, n) # pylint: disable=redefined-outer-name
if dtype is not None and not isinstance(dtype, str):
dtype = get_dtype_name(dtype)
return _api_internal.identity(shape, dtype, device)
# pylint: disable=redefined-outer-name
@set_module('mxnet.ndarray.numpy')
def take(a, indices, axis=None, mode='raise', out=None):
r"""
Take elements from an array along an axis.
When axis is not None, this function does the same thing as "fancy"
indexing (indexing arrays using arrays); however, it can be easier to use
if you need elements along a given axis. A call such as
``np.take(arr, indices, axis=3)`` is equivalent to
``arr[:,:,:,indices,...]``.
Explained without fancy indexing, this is equivalent to the following use
of `ndindex`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of
indices::
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
Nj = indices.shape
for ii in ndindex(Ni):
for jj in ndindex(Nj):
for kk in ndindex(Nk):
out[ii + jj + kk] = a[ii + (indices[jj],) + kk]
Parameters
----------
a : ndarray
The source array.
indices : ndarray
The indices of the values to extract. Also allow scalars for indices.
axis : int, optional
The axis over which to select values. By default, the flattened
input array is used.
out : ndarray, optional
If provided, the result will be placed in this array. It should
be of the appropriate shape and dtype.
mode : {'clip', 'wrap'}, optional
Specifies how out-of-bounds indices will behave.
* 'clip' -- clip to the range (default)
* 'wrap' -- wrap around
'clip' mode means that all indices that are too large are replaced
by the index that addresses the last element along that axis. Note
that this disables indexing with negative numbers.
Returns
-------
out : ndarray
The returned array has the same type as `a`.
Notes
-----
This function differs from the original `numpy.take
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html>`_ in
the following way(s):
- Only ndarray or scalar ndarray is accepted as valid input.
Examples
--------
>>> a = np.array([4, 3, 5, 7, 6, 8])
>>> indices = np.array([0, 1, 4])
>>> np.take(a, indices)
array([4., 3., 6.])
In this example for `a` is an ndarray, "fancy" indexing can be used.
>>> a[indices]
array([4., 3., 6.])
If `indices` is not one dimensional, the output also has these dimensions.
>>> np.take(a, np.array([[0, 1], [2, 3]]))
array([[4., 3.],
[5., 7.]])
"""
if mode not in ('wrap', 'clip', 'raise'):
raise NotImplementedError(
"function take does not support mode '{}'".format(mode))
if axis is None:
return _api_internal.take(reshape(a, -1), indices, 0, mode, out)
else:
return _api_internal.take(a, indices, axis, mode, out)
# pylint: enable=redefined-outer-name
@set_module('mxnet.ndarray.numpy')
def insert(arr, obj, values, axis=None):
"""
Insert values along the given axis before the given indices.
Parameters
----------
arr : ndarray
Input array.
obj : int, slice or ndarray of int64
Object that defines the index or indices before which `values` is
inserted.
Support for multiple insertions when `obj` is a single scalar or a
sequence with one element (only support int32 and int64 element).
values : ndarray
Values to insert into `arr`.
If the type of values is different from that of arr, values is converted
to the type of arr.
axis : int, optional
Axis along which to insert `values`. If `axis` is None then `arr`
is flattened first.
Returns
-------
out : ndarray
A copy of `arr` with `values` inserted. Note that `insert`
does not occur in-place: a new array is returned. If
`axis` is None, `out` is a flattened array.
Notes
-----
- Note that for higher dimensional inserts `obj=0` behaves very different
from `obj=[0]` just like `arr[:,0,:] = values` is different from
`arr[:,[0],:] = values`.
- If obj is a ndarray, it's dtype only supports int64
Examples
--------
>>> a = np.array([[1, 1], [2, 2], [3, 3]])
>>> a
array([[1., 1.],
[2., 2.],
[3., 3.]])
>>> np.insert(a, 1, np.array(5))
array([1., 5., 1., 2., 2., 3., 3.])
>>> np.insert(a, 1, np.array(5), axis=1)
array([[1., 5., 1.],
[2., 5., 2.],
[3., 5., 3.]])
Difference between sequence and scalars:
>>> np.insert(a, np.array([1], dtype=np.int64), np.array([[1],[2],[3]]), axis=1)
array([[1., 1., 1.],
[2., 2., 2.],
[3., 3., 3.]])
>>> np.insert(a, 1, np.array([1, 2, 3]), axis=1)
array([[1., 1., 1.],
[2., 2., 2.],
[3., 3., 3.]])
>>> b = a.flatten()
>>> b
array([1., 1., 2., 2., 3., 3.])
>>> np.insert(b, np.array([2, 2], dtype=np.int64), np.array([5, 6]))
array([1., 1., 5., 6., 2., 2., 3., 3.])
>>> np.insert(b, slice(2, 4), np.array([5, 6]))
array([1., 1., 5., 2., 6., 2., 3., 3.])
# type casting
>>> np.insert(b.astype(np.int32), np.array([2, 2],dtype='int64'), np.array([7.13, False]))
array([1, 1, 7, 0, 2, 2, 3, 3], dtype=int32)
>>> x = np.arange(8).reshape(2, 4)
>>> idx = np.array([1, 3], dtype=np.int64)
>>> np.insert(x, idx, np.array([999]), axis=1)
array([[ 0., 999., 1., 2., 999., 3.],
[ 4., 999., 5., 6., 999., 7.]])
"""
if isinstance(values, numeric_types):
if isinstance(obj, slice):
start = obj.start
stop = obj.stop
step = 1 if obj.step is None else obj.step
return _api_internal.insert_slice(arr, values, start, stop, step, axis)
elif isinstance(obj, integer_types):
return _api_internal.insert_scalar(arr, values, obj, axis)
elif isinstance(obj, NDArray):
return _api_internal.insert_tensor(arr, obj, values, axis)
if not isinstance(arr, NDArray):
raise TypeError("'arr' can not support type {}".format(str(type(arr))))
if not isinstance(values, NDArray):
raise TypeError("'values' can not support type {}".format(str(type(values))))
if isinstance(obj, slice):
start = obj.start
stop = obj.stop
step = 1 if obj.step is None else obj.step
return _api_internal.insert_slice(arr, values, start, stop, step, axis)
elif isinstance(obj, integer_types):
return _api_internal.insert_scalar(arr, values, obj, axis)
elif isinstance(obj, NDArray):
return _api_internal.insert_tensor(arr, values, obj, axis)
else:
raise TypeError("'obj' can not support type {}".format(str(type(obj))))
#pylint: disable= too-many-arguments, no-member, protected-access
def _ufunc_helper(lhs, rhs, fn_array, fn_scalar, lfn_scalar, rfn_scalar=None, out=None):
""" Helper function for element-wise operation.
The function will perform numpy-like broadcasting if needed and call different functions.
Parameters
--------
lhs : ndarray or numeric value
Left-hand side operand.
rhs : ndarray or numeric value
Right-hand operand,
fn_array : function
Function to be called if both lhs and rhs are of ``ndarray`` type.
fn_scalar : function
Function to be called if both lhs and rhs are numeric values.
lfn_scalar : function
Function to be called if lhs is ``ndarray`` while rhs is numeric value
rfn_scalar : function
Function to be called if lhs is numeric value while rhs is ``ndarray``;
if none is provided, then the function is commutative, so rfn_scalar is equal to lfn_scalar
Returns
--------
mxnet.numpy.ndarray or scalar
result array or scalar
"""
from ...numpy import ndarray
from ...numpy_extension import from_numpy # pylint: disable=unused-import
if isinstance(lhs, numeric_types):
if isinstance(rhs, numeric_types):
return fn_scalar(lhs, rhs, out=out)
else:
if rfn_scalar is None:
# commutative function
return lfn_scalar(rhs, float(lhs), out=out)
else:
return rfn_scalar(rhs, float(lhs), out=out)
elif isinstance(rhs, numeric_types):
return lfn_scalar(lhs, float(rhs), out=out)
elif isinstance(lhs, ndarray) and isinstance(rhs, ndarray):
return fn_array(lhs, rhs, out=out)
else:
raise TypeError('type {} not supported'.format(str(type(rhs))))
#pylint: enable= too-many-arguments, no-member, protected-access
@set_module('mxnet.ndarray.numpy')
def unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None):
"""
Find the unique elements of an array.
Returns the sorted unique elements of an array. There are three optional
outputs in addition to the unique elements:
* the indices of the input array that give the unique values
* the indices of the unique array that reconstruct the input array
* the number of times each unique value comes up in the input array
Parameters
----------
ar : ndarray
Input array. Unless `axis` is specified, this will be flattened if it
is not already 1-D.
return_index : bool, optional
If True, also return the indices of `ar` (along the specified axis,
if provided, or in the flattened array) that result in the unique array.
return_inverse : bool, optional
If True, also return the indices of the unique array (for the specified
axis, if provided) that can be used to reconstruct `ar`.
return_counts : bool, optional
If True, also return the number of times each unique item appears
in `ar`.
axis : int or None, optional
The axis to operate on. If None, `ar` will be flattened. If an integer,
the subarrays indexed by the given axis will be flattened and treated
as the elements of a 1-D array with the dimension of the given axis,
see the notes for more details. The default is None.
Returns
-------
unique : ndarray
The sorted unique values.
unique_indices : ndarray, optional
The indices of the first occurrences of the unique values in the
original array. Only provided if `return_index` is True.
unique_inverse : ndarray, optional
The indices to reconstruct the original array from the
unique array. Only provided if `return_inverse` is True.
unique_counts : ndarray, optional
The number of times each of the unique values comes up in the
original array. Only provided if `return_counts` is True.
Notes
-----
When an axis is specified the subarrays indexed by the axis are sorted.
This is done by making the specified axis the first dimension of the array
and then flattening the subarrays in C order. The flattened subarrays are
then viewed as a structured type with each element given a label, with the
effect that we end up with a 1-D array of structured types that can be
treated in the same way as any other 1-D array. The result is that the
flattened subarrays are sorted in lexicographic order starting with the
first element.
This function differs from the original `numpy.unique
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.unique.html>`_ in
the following aspects:
- Only support ndarray as input.
- Object arrays or structured arrays are not supported.
Examples
--------
>>> np.unique(np.array([1, 1, 2, 2, 3, 3]))
array([1., 2., 3.])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1., 2., 3.])
Return the unique rows of a 2D array
>>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
>>> np.unique(a, axis=0)
array([[1., 0., 0.],
[2., 3., 4.]])
Return the indices of the original array that give the unique values:
>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> u, indices = np.unique(a, return_index=True)
>>> u
array([1., 2., 3., 4., 6.])
>>> indices
array([0, 1, 5, 3, 2], dtype=int64)
>>> a[indices]
array([1., 2., 3., 4., 6.])
Reconstruct the input array from the unique values:
>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> u, indices = np.unique(a, return_inverse=True)
>>> u
array([1., 2., 3., 4., 6.])
>>> indices
array([0, 1, 4, 3, 1, 2, 1], dtype=int64)
>>> u[indices]
array([1., 2., 6., 4., 2., 3., 2.])
"""
ret = list(_api_internal.unique(ar, return_index, return_inverse, return_counts, axis))
return ret[0] if len(ret) == 1 else tuple(ret)
@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def add(x1, x2, out=None, **kwargs):
"""
Add arguments element-wise.
Parameters
----------
x1, x2 : ndarrays or scalar values
The arrays to be added. If x1.shape != x2.shape, they must be broadcastable to
a common shape (which may be the shape of one or the other).
out : ndarray
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.
Returns
-------
add : ndarray or scalar
The sum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars.
Notes
-----
This operator now supports automatic type promotion. The resulting type will be determined
according to the following rules:
* If both inputs are of floating number types, the output is the more precise type.
* If only one of the inputs is floating number type, the result is that type.
* If both inputs are of integer types (including boolean), not supported yet.
"""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.add(x1, x2, out=out)
return _api_internal.add(x1, x2, out)
@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def subtract(x1, x2, out=None, **kwargs):
"""
Subtract arguments element-wise.
Parameters
----------
x1, x2 : ndarrays or scalar values
The arrays to be subtracted from each other. If x1.shape != x2.shape,
they must be broadcastable to a common shape (which may be the shape
of one or the other).
out : ndarray
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.
Returns
-------
subtract : ndarray or scalar
The difference of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars.
Notes
-----
This operator now supports automatic type promotion. The resulting type will be determined
according to the following rules:
* If both inputs are of floating number types, the output is the more precise type.
* If only one of the inputs is floating number type, the result is that type.
* If both inputs are of integer types (including boolean), not supported yet.
"""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.subtract(x1, x2, out=out)
return _api_internal.subtract(x1, x2, out)
@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def multiply(x1, x2, out=None, **kwargs):
"""
Multiply arguments element-wise.
Parameters
----------
x1, x2 : ndarrays or scalar values
The arrays to be multiplied. If x1.shape != x2.shape, they must be broadcastable to
a common shape (which may be the shape of one or the other).
out : ndarray
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.
Returns
-------
out : ndarray or scalar
The multiplication of x1 and x2, element-wise. This is a scalar if both x1 and x2
are scalars.
Notes
-----
This operator now supports automatic type promotion. The resulting type will be determined
according to the following rules:
* If both inputs are of floating number types, the output is the more precise type.
* If only one of the inputs is floating number type, the result is that type.
* If both inputs are of integer types (including boolean), not supported yet.
"""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.multiply(x1, x2, out=out)
return _api_internal.multiply(x1, x2, out)
@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def divide(x1, x2, out=None, **kwargs):
"""
Returns a true division of the inputs, element-wise.
Parameters
----------
x1 : ndarray or scalar
Dividend array.
x2 : ndarray or scalar
Divisor array.
out : ndarray
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.
Returns
-------
out : ndarray or scalar
This is a scalar if both x1 and x2 are scalars.
Notes
-----
This operator now supports automatic type promotion. The resulting type will be determined
according to the following rules:
* If both inputs are of floating number types, the output is the more precise type.
* If only one of the inputs is floating number type, the result is that type.
* If both inputs are of integer types (including boolean), the output is of default dtype.
- When npx.is_np_default_dtype() returns False, default dtype is float32;
- When npx.is_np_default_dtype() returns True, default dtype is float64.
"""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.divide(x1, x2, out=out)
return _api_internal.true_divide(x1, x2, out)
@set_module('mxnet.ndarray.numpy')
def true_divide(x1, x2, out=None):
"""Returns a true division of the inputs, element-wise.
Instead of the Python traditional 'floor division', this returns a true
division. True division adjusts the output type to present the best
answer, regardless of input types.
Parameters
----------
x1 : ndarray or scalar
Dividend array.
x2 : ndarray or scalar
Divisor array.
out : ndarray
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.
Returns
-------
out : ndarray or scalar
This is a scalar if both x1 and x2 are scalars.
Notes
-----
This operator now supports automatic type promotion. The resulting type will be determined
according to the following rules:
* If both inputs are of floating number types, the output is the more precise type.
* If only one of the inputs is floating number type, the result is that type.
* If both inputs are of integer types (including boolean), the output is of default dtype.
- When npx.is_np_default_dtype() returns False, default dtype is float32;
- When npx.is_np_default_dtype() returns True, default dtype is float64.
"""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.true_divide(x1, x2, out=out)
return _api_internal.true_divide(x1, x2, out)
@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def floor_divide(x1, x2, out=None):
"""Return the largest integer smaller or equal to the division of the inputs.
It is equivalent to the Python // operator and pairs with the Python % (remainder),
function so that a = a % b + b * (a // b) up to roundoff.
Parameters
----------
x1 : ndarray or scalar
Dividend array.
x2 : ndarray or scalar
Divisor array.
out : ndarray
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.
Returns
-------
out : ndarray or scalar
This is a scalar if both x1 and x2 are scalars.
.. note::
This operator now supports automatic type promotion. The resulting type will be determined
according to the following rules:
* If both inputs are of floating number types, the output is the more precise type.
* If only one of the inputs is floating number type, the result is that type.
* If both inputs are of integer types (including boolean), the output is the more
precise type
"""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.floor_divide(x1, x2, out=out)
return _api_internal.floor_divide(x1, x2, out)
@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def mod(x1, x2, out=None, **kwargs):
"""
Return element-wise remainder of division.
Parameters
----------
x1 : ndarray or scalar
Dividend array.
x2 : ndarray or scalar
Divisor array.
out : ndarray
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.
Returns
-------
out : ndarray or scalar
This is a scalar if both x1 and x2 are scalars.
"""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.mod(x1, x2, out=out)
return _api_internal.mod(x1, x2, out)
@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def fmod(x1, x2, out=None, **kwargs):
"""
Return element-wise remainder of division.
Parameters
----------
x1 : ndarray or scalar
Dividend array.
x2 : ndarray or scalar
Divisor array.
out : ndarray
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.
Returns
-------
out : ndarray or scalar
This is a scalar if both x1 and x2 are scalars.
"""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
_np.fmod(x1, x2, out=out)
return _api_internal.fmod(x1, x2, out)
@set_module('mxnet.ndarray.numpy')
def delete(arr, obj, axis=None):
"""
Return a new array with sub-arrays along an axis deleted. For a one
dimensional array, this returns those entries not returned by
`arr[obj]`.
Parameters
----------
arr : ndarray
Input array.
obj : slice, int or ndarray of ints
Indicate indices of sub-arrays to remove along the specified axis.
axis : int, optional
The axis along which to delete the subarray defined by `obj`.
If `axis` is None, `obj` is applied to the flattened array.
Returns
-------
out : ndarray
A copy of `arr` with the elements specified by `obj` removed. Note
that `delete` does not occur in-place. If `axis` is None, `out` is
a flattened array.
Examples
--------
>>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
>>> arr
array([[ 1., 2., 3., 4.],
[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.]])
>>> np.delete(arr, 1, 0)
array([[ 1., 2., 3., 4.],
[ 9., 10., 11., 12.]])
>>> np.delete(arr, slice(None, None, 2), 1)
array([[ 2., 4.],
[ 6., 8.],
[10., 12.]])
>>> np.delete(arr, np.array([1,3,5]), None)
array([ 1., 3., 5., 7., 8., 9., 10., 11., 12.])
>>> np.delete(arr, np.array([1,1,5]), None)
array([ 1., 3., 4., 5., 7., 8., 9., 10., 11., 12.])
"""
if not isinstance(arr, NDArray):
raise TypeError("'arr' can not support type {}".format(str(type(arr))))
if isinstance(obj, slice):
start = obj.start
stop = obj.stop
step = 1 if obj.step is None else obj.step
return _api_internal.delete(arr, start, stop, step, axis)
elif isinstance(obj, integer_types):
return _api_internal.delete(arr, obj, axis)
elif isinstance(obj, NDArray):
return _api_internal.delete(arr, obj, axis)
else:
raise TypeError("'obj' can not support type {}".format(str(type(obj))))
@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def matmul(a, b, out=None):
"""
Matrix product of two arrays.
Parameters
----------
a, b : ndarray
Input arrays, scalars not allowed.
out : ndarray, optional
A location into which the result is stored.
If provided, it must have a shape that matches the signature (n,k),(k,m)->(n,m).
If not provided or None, a freshly-allocated array is returned.
Returns
-------
y : ndarray
The matrix product of the inputs.
This is a scalar only when both x1, x2 are 1-d vectors.
Raises
------
MXNetError
If the last dimension of a is not the same size as the second-to-last dimension of b.
If a scalar value is passed in.
See Also
--------
tensordot :
Sum products over arbitrary axes.
dot :
alternative matrix product with different broadcasting rules.
einsum :
Einstein summation convention.
Notes
-----
The behavior depends on the arguments in the following way.
- If both arguments are 2-D they are multiplied like conventional matrices.
- If either argument is N-D, N > 2, it is treated as a stack of matrices
residing in the last two indexes and broadcast accordingly.
- If the first argument is 1-D, it is promoted to a matrix by prepending
a 1 to its dimensions. After matrix multiplication the prepended 1 is removed.
- If the second argument is 1-D, it is promoted to a matrix by appending a 1
to its dimensions. After matrix multiplication the appended 1 is removed.
matmul differs from dot in two important ways:
- Multiplication by scalars is not allowed, use multiply instead.
- Stacks of matrices are broadcast together as if the matrices were elements,
respecting the signature (n,k),(k,m)->(n,m):
>>> a = np.ones([9, 5, 7, 4])
>>> c = np.ones([9, 5, 4, 3])
>>> np.dot(a, c).shape
(9, 5, 7, 9, 5, 3)
>>> np.matmul(a, c).shape
(9, 5, 7, 3)
>>> # n is 7, k is 4, m is 3
Examples
--------
For 2-D arrays it is the matrix product:
>>> a = np.array([[1, 0],
... [0, 1]])
>>> b = np.array([[4, 1],
... [2, 2]])
>>> np.matmul(a, b)
array([[4., 1.],
[2., 2.]])
For 2-D mixed with 1-D, the result is the usual.
>>> a = np.array([[1, 0],
... [0, 1]])
>>> b = np.array([1, 2])
>>> np.matmul(a, b)
array([1., 2.])
>>> np.matmul(b, a)
array([1., 2.])
Broadcasting is conventional for stacks of arrays
>>> a = np.arange(2 * 2 * 4).reshape((2, 2, 4))
>>> b = np.arange(2 * 2 * 4).reshape((2, 4, 2))
>>> np.matmul(a, b).shape
(2, 2, 2)
>>> np.matmul(a, b)[0, 1, 1]
array(98.)
>>> sum(a[0, 1, :] * b[0, :, 1])
array(98.)
Scalar multiplication raises an error.
>>> np.matmul([1, 2], 3)
Traceback (most recent call last):
...
mxnet.base.MXNetError: ... : Multiplication by scalars is not allowed.
"""
return _api_internal.matmul(a, b, out)
@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def remainder(x1, x2, out=None):
"""
Return element-wise remainder of division.
Parameters
----------
x1 : ndarray or scalar
Dividend array.
x2 : ndarray or scalar
Divisor array.
out : ndarray
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.
Returns
-------
out : ndarray or scalar
This is a scalar if both x1 and x2 are scalars.
"""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
_np.mod(x1, x2, out=out)
return _api_internal.mod(x1, x2, out)
@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def power(x1, x2, out=None, **kwargs):
"""
First array elements raised to powers from second array, element-wise.
Parameters
----------
x1 : ndarray or scalar
The bases.
x2 : ndarray or scalar
The exponent.
out : ndarray
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.
Returns
-------
out : ndarray or scalar
The bases in x1 raised to the exponents in x2.
This is a scalar if both x1 and x2 are scalars.
"""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.power(x1, x2, out=out)
return _api_internal.power(x1, x2, out)
@set_module('mxnet.ndarray.numpy')
def all(a, axis=None, out=None, keepdims=False):
"""
Test whether all array elements along a given axis evaluate to True.
Parameters
----------
a : ndarray
Input array or object that can be converted to an array.
axis : None or int or tuple of ints, optional
Axis or axes along which a logical AND reduction is performed.
The default (axis = None) is to perform a logical AND over
all the dimensions of the input array.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in
the result as dimensions with size one. With this option,
the result will broadcast correctly against the input array.
out : ndarray, optional
Alternate output array in which to place the result. It must have
the same shape as the expected output and its type is preserved
Returns
--------
all : ndarray, bool
A new boolean or array is returned unless out is specified,
in which case a reference to out is returned.
Examples:
---------
>>> np.all([[True,False],[True,True]])
False
>>> np.all([[True,False],[True,True]], axis=0)
array([ True, False])
>>> np.all([-1, 4, 5])
True
>>> np.all([1.0, np.nan])
True
>>> o=np.array(False)
>>> z=np.all([-1, 4, 5], out=o)
>>> id(z), id(o), z
(28293632, 28293632, array(True)) # may vary
"""
return _api_internal.all(a, axis, keepdims, out)
@set_module('mxnet.ndarray.numpy')
def any(a, axis=None, out=None, keepdims=False):
"""
Test whether any array element along a given axis evaluates to True.
Returns single boolean unless axis is not None
Parameters
----------
a : ndarray
Input array or object that can be converted to an array.
axis : None or int or tuple of ints, optional
Axis or axes along which a logical AND reduction is performed.
The default (axis = None) is to perform a logical AND over
all the dimensions of the input array.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in
the result as dimensions with size one. With this option,
the result will broadcast correctly against the input array.
out : ndarray, optional
Alternate output array in which to place the result. It must have
the same shape as the expected output and its type is preserved
Returns
--------
any : bool or ndarray
A new boolean or ndarray is returned unless out is specified,
in which case a reference to out is returned.
Examples:
---------
>>> np.any([[True, False], [True, True]])
True
>>> np.any([[True, False], [False, False]], axis=0)
array([ True, False])
>>> np.any([-1, 0, 5])
True
>>> np.any(np.nan)
True
>>> o=np.array(False)
>>> z=np.any([-1, 4, 5], out=o)
>>> z, o
(array(True), array(True))
>>> # Check now that z is a reference to o
>>> z is o
True
>>> id(z), id(o) # identity of z and o # doctest: +SKIP
(191614240, 191614240)
"""
return _api_internal.any(a, axis, keepdims, out)
@set_module('mxnet.ndarray.numpy')
def argsort(a, axis=-1, descending=False, stable=True):
"""
Returns the indices that sort an array `x` along a specified axis.
Notes
-----
`argsort` is a standard API in
https://data-apis.org/array-api/latest/API_specification/generated/signatures.sorting_functions.argsort.html
instead of an official NumPy operator.
Parameters
----------
a : ndarray
Array to sort.
axis : int or None, optional
Axis along which to sort. The default is -1 (the last axis). If None,
the flattened array is used.
descending : bool, optional
sort order. If `True`, the returned indices sort x in descending order (by value).
If `False`, the returned indices sort x in ascending order (by value).Default: False.
stable : bool, optional
sort stability. If `True`, the returned indices must maintain the relative order
of x values which compare as equal. If `False`, the returned indices may or may not
maintain the relative order of x values which compare as equal. Default: True.
Returns
-------
index_array : ndarray, int
Array of indices that sort `a` along the specified `axis`.
If `a` is one-dimensional, ``a[index_array]`` yields a sorted `a`.
More generally, ``np.take_along_axis(a, index_array, axis=axis)``
always yields the sorted `a`, irrespective of dimensionality.
Notes
-----
This operator does not support different sorting algorithms.
Examples
--------
One dimensional array:
>>> x = np.array([3, 1, 2])
>>> np.argsort(x)
array([1, 2, 0])
Two-dimensional array:
>>> x = np.array([[0, 3], [2, 2]])
>>> x
array([[0, 3],
[2, 2]])
>>> ind = np.argsort(x, axis=0) # sorts along first axis (down)
>>> ind
array([[0, 1],
[1, 0]])
>>> np.take_along_axis(x, ind, axis=0) # same as np.sort(x, axis=0)
array([[0, 2],
[2, 3]])
>>> ind = np.argsort(x, axis=1) # sorts along last axis (across)
>>> ind
array([[0, 1],
[0, 1]])
>>> np.take_along_axis(x, ind, axis=1) # same as np.sort(x, axis=1)
array([[0, 3],
[2, 2]])
Indices of the sorted elements of a N-dimensional array:
>>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape)
>>> ind
(array([0, 1, 1, 0]), array([0, 0, 1, 1]))
>>> x[ind] # same as np.sort(x, axis=None)
array([0, 2, 2, 3])
"""
return _api_internal.argsort(a, axis, not descending, 'int64')
@set_module('mxnet.ndarray.numpy')
def sort(a, axis=-1, descending=False, stable=True):
"""
Return a sorted copy of an array.
Notes
-----
`sort` is a standard API in
https://data-apis.org/array-api/latest/API_specification/generated/signatures.sorting_functions.sort.html
instead of an official NumPy operator.
Parameters
----------
a : ndarray
Array to sort.
axis : int or None, optional
Axis along which to sort. The default is -1 (the last axis). If None,
the flattened array is used.
descending : bool, optional
sort order. If `True`, the returned indices sort x in descending order (by value).
If `False`, the returned indices sort x in ascending order (by value).Default: False.
stable : bool, optional
sort stability. If `True`, the returned indices must maintain the relative order
of x values which compare as equal. If `False`, the returned indices may or may not
maintain the relative order of x values which compare as equal. Default: True.
Returns
-------
sorted_array : ndarray
Array of the same type and shape as `a`.
Notes
-----
This operator does not support different sorting algorithms.
Examples
--------
>>> a = np.array([[1,4],[3,1]])
>>> np.sort(a) # sort along the last axis
array([[1, 4],
[1, 3]])
>>> np.sort(a, axis=None) # sort the flattened array
array([1, 1, 3, 4])
>>> np.sort(a, axis=0) # sort along the first axis
array([[1, 1],
[3, 4]])
"""
return _api_internal.sort(a, axis, not descending)
@set_module('mxnet.ndarray.numpy')
def dot(a, b, out=None):
"""
Dot product of two arrays. Specifically,
- If both `a` and `b` are 1-D arrays, it is inner product of vectors
- If both `a` and `b` are 2-D arrays, it is matrix multiplication,
- If either `a` or `b` is 0-D (scalar), it is equivalent to :func:`multiply`
and using ``np.multiply(a, b)`` or ``a * b`` is preferred.
- If `a` is an N-D array and `b` is a 1-D array, it is a sum product over
the last axis of `a` and `b`.
- If `a` is an N-D array and `b` is a 2-D array, it is a
sum product over the last axis of `a` and the second-to-last axis of `b`::
dot(a, b)[i,j,k] = sum(a[i,j,:] * b[:,k])
Parameters
----------
a : ndarray
First argument.
b : ndarray
Second argument.
out : ndarray, optional
Output argument. It must have the same shape and type as the expected output.
Returns
-------
output : ndarray
Returns the dot product of `a` and `b`. If `a` and `b` are both
scalars or both 1-D arrays then a scalar is returned; otherwise
an array is returned.
If `out` is given, then it is returned
Examples
--------
>>> a = np.array(3)
>>> b = np.array(4)
>>> np.dot(a, b)
array(12.)
For 2-D arrays it is the matrix product:
>>> a = np.array([[1, 0], [0, 1]])
>>> b = np.array([[4, 1], [2, 2]])
>>> np.dot(a, b)
array([[4., 1.],
[2., 2.]])
>>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = np.arange(5*6)[::-1].reshape((6,5))
>>> np.dot(a, b)[2,3,2,2]
array(29884.)
>>> np.sum(a[2,3,2,:] * b[:,2])
array(29884.)
"""
return _api_internal.dot(a, b, out)
@set_module('mxnet.ndarray.numpy')
def tensordot(a, b, axes=2):
r"""
tensordot(a, b, axes=2)
Compute tensor dot product along specified axes for arrays >= 1-D.
Given two tensors (arrays of dimension greater than or equal to one),
`a` and `b`, and an ndarray object containing two ndarray
objects, ``(a_axes, b_axes)``, sum the products of `a`'s and `b`'s
elements (components) over the axes specified by ``a_axes`` and
``b_axes``. The third argument can be a single non-negative
integer_like scalar, ``N``; if it is such, then the last ``N``
dimensions of `a` and the first ``N`` dimensions of `b` are summed
over.
Parameters
----------
a, b : ndarray, len(shape) >= 1
Tensors to "dot".
axes : int or (2,) ndarray
* integer_like
If an int N, sum over the last N axes of `a` and the first N axes
of `b` in order. The sizes of the corresponding axes must match.
* (2,) ndarray
Or, a list of axes to be summed over, first sequence applying to `a`,
second to `b`. Both elements ndarray must be of the same length.
See Also
--------
dot, einsum
Notes
-----
Three common use cases are:
* ``axes = 0`` : tensor product :math:`a\otimes b`
* ``axes = 1`` : tensor dot product :math:`a\cdot b`
* ``axes = 2`` : (default) tensor double contraction :math:`a:b`
When `axes` is integer_like, the sequence for evaluation will be: first
the -Nth axis in `a` and 0th axis in `b`, and the -1th axis in `a` and
Nth axis in `b` last.
When there is more than one axis to sum over - and they are not the last
(first) axes of `a` (`b`) - the argument `axes` should consist of
two sequences of the same length, with the first axis to sum over given
first in both sequences, the second axis second, and so forth.
Examples
--------
>>> a = np.arange(60.).reshape(3,4,5)
>>> b = np.arange(24.).reshape(4,3,2)
>>> c = np.tensordot(a,b, axes=([1,0],[0,1]))
>>> c.shape
(5, 2)
>>> c
array([[ 4400., 4730.],
[ 4532., 4874.],
[ 4664., 5018.],
[ 4796., 5162.],
[ 4928., 5306.]])
"""
return _api_internal.tensordot(a, b, axes)
@set_module('mxnet.ndarray.numpy')
def histogram(a, bins=10, range=None, normed=None, weights=None, density=None): # pylint: disable=too-many-arguments
"""
Compute the histogram of a set of data.
Parameters
----------
a : ndarray
Input data. The histogram is computed over the flattened array.
bins : int or NDArray
If `bins` is an int, it defines the number of equal-width
bins in the given range (10, by default). If `bins` is a
sequence, it defines a monotonically increasing array of bin edges,
including the rightmost edge, allowing for non-uniform bin widths.
.. versionadded:: 1.11.0
If `bins` is a string, it defines the method used to calculate the
optimal bin width, as defined by `histogram_bin_edges`.
range : (float, float)
The lower and upper range of the bins. Required when `bins` is an integer.
Values outside the range are ignored. The first element of the range must
be less than or equal to the second.
normed : bool, optional
Not supported yet, coming soon.
weights : array_like, optional
Not supported yet, coming soon.
density : bool, optional
Not supported yet, coming soon.
"""
if normed is True:
raise NotImplementedError("normed is not supported yet...")
if weights is not None:
raise NotImplementedError("weights is not supported yet...")
if density is True:
raise NotImplementedError("density is not supported yet...")
if isinstance(bins, numeric_types):
if range is None:
raise NotImplementedError("automatic range is not supported yet...")
return tuple(_api_internal.histogram(a, None, bins, range))
if isinstance(bins, (list, tuple)):
raise NotImplementedError("array_like bins is not supported yet...")
if isinstance(bins, str):
raise NotImplementedError("string bins is not supported yet...")
if isinstance(bins, NDArray):
return tuple(_api_internal.histogram(a, bins, None, None))
raise ValueError("np.histogram fails with", locals())
@set_module('mxnet.ndarray.numpy')
def eye(N, M=None, k=0, dtype=float, **kwargs):
"""
Return a 2-D array with ones on the diagonal and zeros elsewhere.
Parameters
----------
N : int
Number of rows in the output.
M : int, optional
Number of columns in the output. If None, defaults to N.
k : int, optional
Index of the diagonal: 0 (the default) refers to the main diagonal,
a positive value refers to an upper diagonal,
and a negative value to a lower diagonal.
dtype : data-type, optional
Data-type of the returned array.
- When npx.is_np_default_dtype() returns False, default dtype is float32;
- When npx.is_np_default_dtype() returns True, default dtype is float64.
Returns
-------
I : ndarray of shape (N,M)
An array where all elements are equal to zero,
except for the k-th diagonal, whose values are equal to one.
"""
_sanity_check_params('eye', ['order'], kwargs)
device = kwargs.pop('device', current_device())
if device is None:
device = str(current_device())
else:
device = str(device)
if dtype is None or dtype is float:
dtype = _np.float64 if is_np_default_dtype() else _np.float32
if dtype is not None and not isinstance(dtype, str):
dtype = get_dtype_name(dtype)
# To avoid overflow errors, map large positive k values to the just-out-of-range "num_columns" value
k = minimum(k, M if M is not None else N)
# Similarly, map large negative k values to the just-out-of-range "-num_rows" value
k = maximum(k, -N)
return _api_internal.eye(N, M, int(k), device, dtype)
@set_module('mxnet.ndarray.numpy')
def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0, device=None): # pylint: disable=too-many-arguments
r"""
Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval [start, stop].
The endpoint of the interval can optionally be excluded.
Parameters
----------
start : int or float
The starting value of the sequence.
stop : int or float
The end value of the sequence, unless endpoint is set to False. In
that case, the sequence consists of all but the last of num + 1
evenly spaced samples, so that stop is excluded. Note that the step
size changes when endpoint is False.
num : int, optional
Number of samples to generate. Default is 50. Must be non-negative.
endpoint : bool, optional
If True, stop is the last sample. Otherwise, it is not included.
Default is True.
retstep : bool, optional
If True, return (samples, step), where step is the spacing between samples.
dtype : dtype, optional
The type of the output array. If dtype is not given, infer the data
type from the other input arguments.
axis : int, optional
The axis in the result to store the samples. Relevant only if start or
stop are array-like. By default (0), the samples will be along a new
axis inserted at the beginning. Use -1 to get an axis at the end.
Returns
-------
samples : ndarray
There are num equally spaced samples in the closed interval
`[start, stop]` or the half-open interval `[start, stop)`
(depending on whether endpoint is True or False).
step : float, optional
Only returned if retstep is True
Size of spacing between samples.
See Also
--------
arange : Similar to `linspace`, but uses a step size (instead of the
number of samples).
Examples
--------
>>> np.linspace(2.0, 3.0, num=5)
array([2. , 2.25, 2.5 , 2.75, 3. ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
Graphical illustration:
>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1.asnumpy(), y.asnumpy(), 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2.asnumpy(), (y + 0.5).asnumpy(), 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()
Notes
-----
This function differs from the original `numpy.linspace
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html>`_ in
the following aspects:
- `start` and `stop` do not support list, numpy ndarray and mxnet ndarray
- axis could only be 0
- There could be an additional `device` argument to specify the device, e.g. the i-th
GPU.
"""
if isinstance(start, (list, _np.ndarray, NDArray)) or \
isinstance(stop, (list, _np.ndarray, NDArray)):
raise NotImplementedError('start and stop only support int')
if axis != 0:
raise NotImplementedError("the function only support axis 0")
if device is None:
device = str(current_device())
else:
device = str(device)
if dtype is not None and not isinstance(dtype, str):
dtype = get_dtype_name(dtype)
if dtype is None:
dtype = _np.float64 if is_np_default_dtype() else _np.float32
if retstep:
step = (stop - start) / (num - int(endpoint))
return _api_internal.linspace(start, stop, num, endpoint, device, dtype), step
else:
return _api_internal.linspace(start, stop, num, endpoint, device, dtype)
@set_module('mxnet.ndarray.numpy')
def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0, device=None): # pylint: disable=too-many-arguments
r"""Return numbers spaced evenly on a log scale.
In linear space, the sequence starts at ``base ** start``
(`base` to the power of `start`) and ends with ``base ** stop``
(see `endpoint` below).
Non-scalar `start` and `stop` are now supported.
Parameters
----------
start : int or float
``base ** start`` is the starting value of the sequence.
stop : int or float
``base ** stop`` is the final value of the sequence, unless `endpoint`
is False. In that case, ``num + 1`` values are spaced over the
interval in log-space, of which all but the last (a sequence of
length `num`) are returned.
num : integer, optional
Number of samples to generate. Default is 50.
endpoint : boolean, optional
If true, `stop` is the last sample. Otherwise, it is not included.
Default is True.
base : float, optional
The base of the log space. The step size between the elements in
``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform.
Default is 10.0.
dtype : dtype
The type of the output array. If `dtype` is not given, infer the data
type from the other input arguments.
axis : int, optional
The axis in the result to store the samples. Relevant only if start
or stop are array-like. By default (0), the samples will be along a
new axis inserted at the beginning. Now, axis only support axis = 0.
device : Device, optional
Device context on which the memory is allocated. Default is
`mxnet.device.current_device()`.
Returns
-------
samples : ndarray
`num` samples, equally spaced on a log scale.
See Also
--------
arange : Similar to linspace, with the step size specified instead of the
number of samples. Note that, when used with a float endpoint, the
endpoint may or may not be included.
linspace : Similar to logspace, but with the samples uniformly distributed
in linear space, instead of log space.
Notes
-----
Logspace is equivalent to the code. Now wo only support axis = 0.
>>> y = np.linspace(start, stop, num=num, endpoint=endpoint)
...
>>> power(base, y).astype(dtype)
...
Examples
--------
>>> np.logspace(2.0, 3.0, num=4)
array([ 100. , 215.44347, 464.15887, 1000. ])
>>> np.logspace(2.0, 3.0, num=4, endpoint=False)
array([100. , 177.82794, 316.22775, 562.3413 ])
>>> np.logspace(2.0, 3.0, num=4, base=2.0)
array([4. , 5.0396843, 6.349604 , 8. ])
>>> np.logspace(2.0, 3.0, num=4, base=2.0, dtype=np.int32)
array([4, 5, 6, 8], dtype=int32)
>>> np.logspace(2.0, 3.0, num=4, device=npx.gpu(0))
array([ 100. , 215.44347, 464.15887, 1000. ], device=gpu(0))
"""
if isinstance(start, (list, tuple, _np.ndarray, NDArray)) or \
isinstance(stop, (list, tuple, _np.ndarray, NDArray)):
raise NotImplementedError('start and stop only support int and float')
if axis != 0:
raise NotImplementedError("the function only support axis 0")
if device is None:
device = str(current_device())
else:
device = str(device)
if dtype is not None and not isinstance(dtype, str):
dtype = get_dtype_name(dtype)
return _api_internal.logspace(start, stop, num, endpoint, base, device, dtype)
@set_module('mxnet.ndarray.numpy')
def expand_dims(a, axis):
"""Expand the shape of an array.
Insert a new axis that will appear at the `axis` position in the expanded
Parameters
----------
a : ndarray
Input array.
axis : int
Position in the expanded axes where the new axis is placed.
Returns
-------
res : ndarray
Output array. The number of dimensions is one greater than that of
the input array.
"""
return _api_internal.expand_dims(a, axis)
@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def gcd(x1, x2, out=None, **kwargs):
"""
Returns the greatest common divisor of ``|x1|`` and ``|x2|``
Parameters
----------
x1, x2 : ndarrays or scalar values
The arrays for computing greatest common divisor. If x1.shape != x2.shape,
they must be broadcastable to a common shape (which may be the shape of
one or the other).
out : ndarray or None, optional
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.
Returns
-------
y : ndarray or scalar
The greatest common divisor of the absolute value of the inputs
This is a scalar if both `x1` and `x2` are scalars.
See Also
--------
lcm : The lowest common multiple
Examples
--------
>>> np.gcd(12, 20)
4
>>> np.gcd(np.arange(6, dtype=int), 20)
array([20, 1, 2, 1, 4, 5], dtype=int64)
"""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.gcd(x1, x2, out=out)
return _api_internal.gcd(x1, x2, out)
@set_module('mxnet.ndarray.numpy')
@wrap_np_binary_func
def lcm(x1, x2, out=None, **kwargs):
"""
Returns the lowest common multiple of ``|x1|`` and ``|x2|``
Parameters
----------
x1, x2 : ndarrays or scalar values
The arrays for computing lowest common multiple. If x1.shape != x2.shape,
they must be broadcastable to a common shape (which may be the shape of
one or the other).
out : ndarray or None, optional
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array
is returned.
Returns
-------
y : ndarray or scalar
The lowest common multiple of the absolute value of the inputs
This is a scalar if both `x1` and `x2` are scalars.
See Also
--------
gcd : The greatest common divisor
Examples
--------
>>> np.lcm(12, 20)
60
>>> np.lcm(np.arange(6, dtype=int), 20)
array([ 0, 20, 20, 60, 20, 20], dtype=int64)
"""
if isinstance(x1, numeric_types) and isinstance(x2, numeric_types):
return _np.lcm(x1, x2, out=out)
return _api_internal.lcm(x1, x2, out)
@set_module('mxnet.ndarray.numpy')
def tril(m, k=0):
r"""
Lower triangle of an array.
Return a copy of an array with elements above the `k`-th diagonal zeroed.
Parameters
----------
m : ndarray, shape (M, N)
Input array.
k : int, optional
Diagonal above which to zero elements. `k = 0` (the default) is the
main diagonal, `k < 0` is below it and `k > 0` is above.
Returns
-------
tril : ndarray, shape (M, N)
Lower triangle of `m`, of same shape and data-type as `m`.
See Also
--------
triu : same thing, only for the upper triangle
Examples
--------
>>> a = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
>>> np.tril(a, -1)
array([[ 0., 0., 0.],
[ 4., 0., 0.],
[ 7., 8., 0.],
[10., 11., 12.]])
"""
return _api_internal.tril(m, k)
@set_module('mxnet.ndarray.numpy')
def triu(m, k=0):
r"""
Upper triangle of an array.
Return a copy of a matrix with the elements below the `k`-th diagonal
zeroed.
Please refer to the documentation for `tril` for further details.
See Also
--------
tril : lower triangle of an array
Examples
--------
>>> np.triu(np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]]), -1)
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 0, 8, 9],
[ 0, 0, 12]])
"""
return _api_internal.triu(m, k)
@set_module('mxnet.ndarray.numpy')
def trace(a, offset=0, axis1=0, axis2=1, out=None):
"""
Return the sum along diagonals of the array.
If `a` is 2-D, the sum along its diagonal with the given offset
is returned, i.e., the sum of elements ``a[i,i+offset]`` for all i.
If `a` has more than two dimensions, then the axes specified by axis1 and
axis2 are used to determine the 2-D sub-arrays whose traces are returned.
The shape of the resulting array is the same as that of `a` with `axis1`
and `axis2` removed.
Parameters
----------
a : ndarray
Input array, from which the diagonals are taken.
offset : int, optional
Offset of the diagonal from the main diagonal. Can be both positive
and negative. Defaults to 0.
axis1, axis2 : int, optional
Axes to be used as the first and second axis of the 2-D sub-arrays
from which the diagonals should be taken. Defaults are the first two
axes of `a`.
out : ndarray, optional
Array into which the output is placed. It must be of the right shape
and right type to hold the output.
Returns
-------
sum_along_diagonals : ndarray
If `a` is 2-D, the sum along the diagonal is returned. If `a` has
larger dimensions, then an array of sums along diagonals is returned.
Examples
--------
>>> a = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> np.trace(a)
array(3.)
>>> a = np.arange(8).reshape((2, 2, 2))
>>> np.trace(a)
array([6., 8.])
>>> a = np.arange(24).reshape((2, 2, 2, 3))
>>> np.trace(a).shape
(2, 3)
"""
return _api_internal.trace(a, offset, axis1, axis2, out)
@set_module('mxnet.ndarray.numpy')
def tri(N, M=None, k=0, dtype=None, device=None):
r"""
An array with ones at and below the given diagonal and zeros elsewhere.
Parameters
----------
N : int
Number of rows in the array.
M : int, optional
Number of columns in the array.
By default, `M` is taken equal to `N`.
k : int, optional
The sub-diagonal at and below which the array is filled.
`k` = 0 is the main diagonal, while `k` < 0 is below it,
and `k` > 0 is above. The default is 0.
dtype : dtype, optional
Data type of the returned array. The default is float.
Returns
-------
tri : ndarray of shape (N, M)
Array with its lower triangle filled with ones and zero elsewhere;
in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise.
Examples
--------
>>> np.tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],
[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]])
>>> np.tri(3, 5, -1)
array([[0., 0., 0., 0., 0.],
[1., 0., 0., 0., 0.],
[1., 1., 0., 0., 0.]])
"""
if device is None:
device = str(current_device())
return _api_internal.tri(N, M, k, dtype, device)
@set_module('mxnet.ndarray.numpy')
def triu_indices(n, k=0, m=None, device=None):
r"""
Return the indices for the upper-triangle of an (n, m) array.
Parameters
----------
n : int
The size of the arrays for which the returned indices will
be valid.
k : int, optional
Diagonal offset (see `triu` for details).
m : int, optional
.. versionadded:: 1.9.0
The column dimension of the arrays for which the returned
arrays will be valid.
By default `m` is taken equal to `n`.
Returns
-------
inds : tuple, shape(2) of ndarrays, shape(`n`)
The indices for the triangle. The returned tuple contains two arrays,
each with the indices along one dimension of the array. Can be used
to slice a ndarray of shape(`n`, `n`).
See also
--------
tril_indices : similar function, for lower-triangular.
mask_indices : generic function accepting an arbitrary mask function.
triu, tril
Examples
--------
Compute two different sets of indices to access 4x4 arrays, one for the
upper triangular part starting at the main diagonal, and one starting two
diagonals further right:
>>> iu1 = np.triu_indices(4)
>>> iu2 = np.triu_indices(4, 2)
Here is how they can be used with a sample array:
>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
Both for indexing:
>>> a[iu1]
array([ 0, 1, 2, ..., 10, 11, 15])
And for assigning values:
>>> a[iu1] = -1
>>> a
array([[-1, -1, -1, -1],
[ 4, -1, -1, -1],
[ 8, 9, -1, -1],
[12, 13, 14, -1]])
These cover only a small part of the whole array (two diagonals right
of the main one):
>>> a[iu2] = -10
>>> a
array([[ -1, -1, -10, -10],
[ 4, -1, -1, -10],
[ 8, 9, -1, -1],
[ 12, 13, 14, -1]])
"""
return nonzero(~tri(N=n, M=m, k=k-1, dtype=bool, device=device))
@set_module('mxnet.ndarray.numpy')
def triu_indices_from(arr, k=0):
"""
Return the indices for the upper-triangle of arr.
See `triu_indices` for full details.
Parameters
----------
arr : ndarray, shape(N, N)
The indices will be valid for square arrays.
k : int, optional
Diagonal offset (see `triu` for details).
Returns
-------
triu_indices_from : tuple, shape(2) of ndarray, shape(N)
Indices for the upper-triangle of `arr`.
See Also
--------
triu_indices, triu
"""
if arr.ndim != 2:
raise ValueError("input array must be 2-d")
return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
def _unary_func_helper(x, fn_array, fn_scalar, out=None, **kwargs):
"""Helper function for unary operators with kwargs.
Parameters
----------
x : ndarray or scalar
Input of the unary operator.
fn_array : function
Function to be called if x is of ``ndarray`` type.
fn_scalar : function
Function to be called if x is a Python scalar.
out : ndarray
The buffer ndarray for storing the result of the unary function.
Returns
-------
out : mxnet.numpy.ndarray or scalar
Result array or scalar.
"""
if isinstance(x, numeric_types):
return fn_scalar(x, **kwargs)
elif isinstance(x, NDArray):
return fn_array(x, out=out, **kwargs)
else:
raise TypeError('type {} not supported'.format(str(type(x))))
def _pure_unary_func_helper(x, fn_array, fn_scalar, out=None, **kwargs):
"""Helper function for unary operators without support for kwargs.
Parameters
----------
x : ndarray or scalar
Input of the unary operator.
fn_array : function
Function to be called if x is of ``ndarray`` type.
fn_scalar : function
Function to be called if x is a Python scalar.
out : ndarray
The buffer ndarray for storing the result of the unary function.
Returns
-------
out : mxnet.numpy.ndarray or scalar
Result array or scalar.
"""
if isinstance(x, numeric_types):
return fn_scalar(x, **kwargs)
elif isinstance(x, NDArray):
return fn_array(x, out)
else:
raise TypeError('type {} not supported'.format(str(type(x))))
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def sin(x, out=None, **kwargs):
r"""
Trigonometric sine, element-wise.
Parameters
----------
x : ndarray or scalar
Angle, in radians (:math:`2 \pi` rad equals 360 degrees).
out : ndarray or None
A location into which the result is stored. If provided, it
must have a shape that the inputs broadcast to. If not provided
or None, a freshly-allocated array is returned. The dtype of the
output is the same as that of the input if the input is an ndarray.
Returns
-------
y : ndarray or scalar
The sine of each element of x. This is a scalar if `x` is a scalar.
Notes
----
This function only supports input type of float.
Examples
--------
>>> np.sin(np.pi/2.)
1.0
>>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180.)
array([0. , 0.5 , 0.70710677, 0.86602545, 1. ])
"""
return _pure_unary_func_helper(x, _api_internal.sin, _np.sin, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def cos(x, out=None, **kwargs):
r"""
Cosine, element-wise.
Parameters
----------
x : ndarray or scalar
Angle, in radians (:math:`2 \pi` rad equals 360 degrees).
out : ndarray or None
A location into which the result is stored. If provided, it
must have a shape that the inputs broadcast to. If not provided
or None, a freshly-allocated array is returned. The dtype of the
output is the same as that of the input if the input is an ndarray.
Returns
-------
y : ndarray or scalar
The corresponding cosine values. This is a scalar if x is a scalar.
Notes
----
This function only supports input type of float.
Examples
--------
>>> np.cos(np.array([0, np.pi/2, np.pi]))
array([ 1.000000e+00, -4.371139e-08, -1.000000e+00])
>>> # Example of providing the optional output parameter
>>> out1 = np.array([0], dtype='f')
>>> out2 = np.cos(np.array([0.1]), out1)
>>> out2 is out1
True
"""
return _pure_unary_func_helper(x, _api_internal.cos, _np.cos, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def sinh(x, out=None, **kwargs):
"""
Hyperbolic sine, element-wise.
Equivalent to ``1/2 * (np.exp(x) - np.exp(-x))`` or ``-1j * np.sin(1j*x)``.
Parameters
----------
x : ndarray or scalar
Input array or scalar.
out : ndarray or None
A location into which the result is stored. If provided, it
must have a shape that the inputs broadcast to. If not provided
or None, a freshly-allocated array is returned. The dtype of the
output is the same as that of the input if the input is an ndarray.
Returns
-------
y : ndarray or scalar
The corresponding hyperbolic sine values. This is a scalar if `x` is a scalar.
Notes
----
This function only supports input type of float.
Examples
--------
>>> np.sinh(0)
0.0
>>> # Example of providing the optional output parameter
>>> out1 = np.array([0], dtype='f')
>>> out2 = np.sinh(np.array([0.1]), out1)
>>> out2 is out1
True
"""
return _pure_unary_func_helper(x, _api_internal.sinh, _np.sinh, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def cosh(x, out=None, **kwargs):
"""
Hyperbolic cosine, element-wise.
Equivalent to ``1/2 * (np.exp(x) + np.exp(-x))`` and ``np.cos(1j*x)``.
Parameters
----------
x : ndarray or scalar
Input array or scalar.
out : ndarray or None
A location into which the result is stored. If provided, it
must have a shape that the inputs broadcast to. If not provided
or None, a freshly-allocated array is returned. The dtype of the
output is the same as that of the input if the input is an ndarray.
Returns
-------
y : ndarray or scalar
The corresponding hyperbolic cosine values. This is a scalar if `x` is a scalar.
Notes
----
This function only supports input type of float.
Examples
--------
>>> np.cosh(0)
1.0
"""
return _pure_unary_func_helper(x, _api_internal.cosh, _np.cosh, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def tanh(x, out=None, **kwargs):
"""
Compute hyperbolic tangent element-wise.
Equivalent to ``np.sinh(x)/np.cosh(x)``.
Parameters
----------
x : ndarray or scalar.
Input array.
out : ndarray or None
A location into which the result is stored. If provided, it
must have a shape that the inputs fill into. If not provided
or None, a freshly-allocated array is returned. The dtype of the
output and input must be the same.
Returns
-------
y : ndarray or scalar
The corresponding hyperbolic tangent values.
Notes
-----
If `out` is provided, the function writes the result into it,
and returns a reference to `out`. (See Examples)
- input x does not support complex computation (like imaginary number)
>>> np.tanh(np.pi*1j)
TypeError: type <type 'complex'> not supported
Examples
--------
>>> np.tanh(np.array[0, np.pi]))
array([0. , 0.9962721])
>>> np.tanh(np.pi)
0.99627207622075
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out1 = np.array(1)
>>> out2 = np.tanh(np.array(0.1), out1)
>>> out2 is out1
True
"""
return _pure_unary_func_helper(x, _api_internal.tanh, _np.tanh, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def log10(x, out=None, **kwargs):
"""
Return the base 10 logarithm of the input array, element-wise.
Parameters
----------
x : ndarray or scalar
Input array or scalar.
out : ndarray or None
A location into which t'absolute', he result is stored. If provided, it
must have a shape that the inputs broadcast to. If not provided
or None, a freshly-allocated array is returned. The dtype of the
output is the same as that of the input if the input is an ndarray.
Returns
-------
y : ndarray or scalar
The logarithm to the base 10 of `x`, element-wise. NaNs are
returned where x is negative. This is a scalar if `x` is a scalar.
Notes
----
This function only supports input type of float.
Examples
--------
>>> np.log10(np.array([1e-15, -3.]))
array([-15., nan])
"""
return _pure_unary_func_helper(x, _api_internal.log10, _np.log10, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def sqrt(x, out=None, **kwargs):
"""
Return the non-negative square-root of an array, element-wise.
Parameters
----------
x : ndarray or scalar
The values whose square-roots are required.
out : ndarray, or None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or `None`,
a freshly-allocated array is returned.
Returns
-------
y : ndarray or scalar
An array of the same shape as `x`, containing the positive
square-root of each element in `x`. This is a scalar if `x` is a scalar.
Notes
----
This function only supports input type of float.
Examples
--------
>>> np.sqrt(np.array([1,4,9]))
array([1., 2., 3.])
>>> np.sqrt(np.array([4, -1, _np.inf]))
array([ 2., nan, inf])
"""
return _pure_unary_func_helper(x, _api_internal.sqrt, _np.sqrt, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def cbrt(x, out=None, **kwargs):
r"""
Return the cube-root of an array, element-wise.
Parameters
----------
x : ndarray
The values whose cube-roots are required.
out : ndarray, optional
A location into which the result is stored. If provided, it must have a shape that the
inputs broadcast to. If not provided or None, a freshly-allocated array is returned.
A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
Returns
----------
y : ndarray
An array of the same shape as x, containing the cube cube-root of each element in x.
If out was provided, y is a reference to it. This is a scalar if x is a scalar.
Examples
----------
>>> np.cbrt([1,8,27])
array([ 1., 2., 3.])
"""
return _pure_unary_func_helper(x, _api_internal.cbrt, _np.cbrt, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def abs(x, out=None, **kwargs):
r"""
Calculate the absolute value element-wise.
Parameters
----------
x : ndarray or scalar
Input array.
out : ndarray or None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or `None`,
a freshly-allocated array is returned.
Returns
-------
absolute : ndarray
An ndarray containing the absolute value of
each element in `x`. This is a scalar if `x` is a scalar.
Examples
--------
>>> x = np.array([-1.2, 1.2])
>>> np.abs(x)
array([1.2, 1.2])
"""
return _pure_unary_func_helper(x, _api_internal.abs, _np.abs, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def fabs(x, out=None, **kwargs):
r"""
Calculate the absolute value element-wise.
This function returns the absolute values (positive magnitude) of the
data in `x`. Complex values are not handled, use `absolute` to find the
absolute values of complex data.
Parameters
----------
x : ndarray or scalar
Input array.
out : ndarray or None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or `None`,
a freshly-allocated array is returned.
Returns
-------
absolute : ndarray
An ndarray containing the absolute value of
each element in `x`. This is a scalar if `x` is a scalar.
Examples
--------
>>> np.fabs(-1)
1.0
>>> np.fabs(np.array([-1.2, 1.2]))s
array([ 1.2, 1.2])
"""
return _pure_unary_func_helper(x, _api_internal.abs, _np.abs, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def absolute(x, out=None, **kwargs):
r"""
Calculate the absolute value element-wise.
np.abs is a shorthand for this function.
Parameters
----------
x : ndarray
Input array.
out : ndarray, optional
A location into which the result is stored. If provided, it must have a shape
that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned.
A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
Returns
----------
absolute : ndarray
An ndarray containing the absolute value of each element in x.
Examples
----------
>>> x = np.array([-1.2, 1.2])
>>> np.absolute(x)
array([ 1.2, 1.2])
"""
return _pure_unary_func_helper(x, _api_internal.abs, _np.abs, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def sign(x, out=None, **kwargs):
r"""
Returns an element-wise indication of the sign of a number.
The `sign` function returns ``-1 if x < 0, 0 if x==0, 1 if x > 0``. Only supports real number.
Parameters
----------
x : ndarray or a scalar
Input values.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.
Returns
-------
y : ndarray
The sign of `x`.
This is a scalar if `x` is a scalar.
Note
-------
- Only supports real number as input elements.
- Input type does not support Python native iterables(list, tuple, ...).
- ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output.
- ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output.
- ``out`` param does not support scalar input case.
Examples
--------
>>> a = np.array([-5., 4.5])
>>> np.sign(a)
array([-1., 1.])
>>> # Use scalars as inputs:
>>> np.sign(4.0)
1.0
>>> np.sign(0)
0
>>> # Use ``out`` parameter:
>>> b = np.zeros((2, ))
>>> np.sign(a, out=b)
array([-1., 1.])
>>> b
array([-1., 1.])
"""
return _pure_unary_func_helper(x, _api_internal.sign, _np.sign, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def exp(x, out=None, **kwargs):
r"""
Calculate the exponential of all elements in the input array.
Parameters
----------
x : ndarray or scalar
Input values.
out : ndarray or None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or `None`,
a freshly-allocated array is returned.
Returns
-------
out : ndarray or scalar
Output array, element-wise exponential of `x`.
This is a scalar if `x` is a scalar.
Examples
--------
>>> np.exp(1)
2.718281828459045
>>> x = np.array([-1, 1, -2, 2])
>>> np.exp(x)
array([0.36787945, 2.7182817 , 0.13533528, 7.389056 ])
"""
return _pure_unary_func_helper(x, _api_internal.exp, _np.exp, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def expm1(x, out=None, **kwargs):
r"""
Calculate `exp(x) - 1` of all elements in the input array.
Parameters
----------
x : ndarray or scalar
Input values.
out : ndarray or None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or `None`,
a freshly-allocated array is returned.
Returns
-------
out : ndarray or scalar
Output array, element-wise exponential minus one: `out = exp(x) - 1`.
This is a scalar if `x` is a scalar.
Examples
--------
>>> np.expm1(1)
1.718281828459045
>>> x = np.array([-1, 1, -2, 2])
>>> np.expm1(x)
array([-0.63212056, 1.71828183, -0.86466472, 6.3890561])
"""
return _pure_unary_func_helper(x, _api_internal.expm1, _np.expm1, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def arcsin(x, out=None, **kwargs):
r"""
Inverse sine, element-wise.
Parameters
----------
x : ndarray or scalar
`y`-coordinate on the unit circle.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape as the input.
If not provided or None, a freshly-allocated array is returned.
Returns
-------
angle : ndarray or scalar
Output array is same shape and type as x. This is a scalar if x is a scalar.
The inverse sine of each element in `x`, in radians and in the
closed interval ``[-pi/2, pi/2]``.
Examples
--------
>>> np.arcsin(1) # pi/2
1.5707963267948966
>>> np.arcsin(-1) # -pi/2
-1.5707963267948966
>>> np.arcsin(0)
0.0
Notes
-----
`arcsin` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that :math:`sin(z) = x`. The convention is to
return the angle `z` whose real part lies in [-pi/2, pi/2].
For real-valued input data types, *arcsin* always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields ``nan`` and sets the `invalid` floating point error flag.
The inverse sine is also known as `asin` or sin^{-1}.
The output `ndarray` has the same `device` as the input `ndarray`.
This function differs from the original `numpy.arcsin
<https://numpy.org/doc/stable/reference/generated/numpy.arcsin.html>`_ in
the following aspects:
- Only support ndarray or scalar now.
- `where` argument is not supported.
- Complex input is not supported.
References
----------
Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*,
10th printing, New York: Dover, 1964, pp. 79ff.
http://www.math.sfu.ca/~cbm/aands/
"""
return _pure_unary_func_helper(x, _api_internal.arcsin, _np.arcsin, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def arccos(x, out=None, **kwargs):
r"""
Trigonometric inverse cosine, element-wise.
The inverse of cos so that, if y = cos(x), then x = arccos(y).
Parameters
----------
x : ndarray
x-coordinate on the unit circle. For real arguments, the domain is [-1, 1].
out : ndarray, optional
A location into which the result is stored. If provided, it must have a shape that
the inputs broadcast to. If not provided or None, a freshly-allocated array is returned.
A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
Returns
----------
angle : ndarray
The angle of the ray intersecting the unit circle at the given x-coordinate in radians [0, pi].
This is a scalar if x is a scalar.
See also
----------
cos, arctan, arcsin
Notes
----------
arccos is a multivalued function: for each x there are infinitely many numbers z such that
cos(z) = x. The convention is to return the angle z whose real part lies in [0, pi].
For real-valued input data types, arccos always returns real output.
For each value that cannot be expressed as a real number or infinity, it yields nan and sets
the invalid floating point error flag.
The inverse cos is also known as acos or cos^-1.
Examples
----------
>>> np.arccos([1, -1])
array([ 0. , 3.14159265])
"""
return _pure_unary_func_helper(x, _api_internal.arccos, _np.arccos, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def arctan(x, out=None, **kwargs):
r"""
Trigonometric inverse tangent, element-wise.
The inverse of tan, so that if ``y = tan(x)`` then ``x = arctan(y)``.
Parameters
----------
x : ndarray or scalar
Input values.
out : ndarray or None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or `None`,
a freshly-allocated array is returned.
Returns
-------
out : ndarray or scalar
Out has the same shape as `x`. It lies is in
``[-pi/2, pi/2]`` (``arctan(+/-inf)`` returns ``+/-pi/2``).
This is a scalar if `x` is a scalar.
Notes
-----
`arctan` is a multi-valued function: for each `x` there are infinitely
many numbers `z` such that tan(`z`) = `x`. The convention is to return
the angle `z` whose real part lies in [-pi/2, pi/2].
For real-valued input data types, `arctan` always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields ``nan`` and sets the `invalid` floating point error flag.
For complex-valued input, we do not have support for them yet.
The inverse tangent is also known as `atan` or tan^{-1}.
Examples
--------
>>> x = np.array([0, 1])
>>> np.arctan(x)
array([0. , 0.7853982])
>>> np.pi/4
0.7853981633974483
"""
return _pure_unary_func_helper(x, _api_internal.arctan, _np.arctan, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def log(x, out=None, **kwargs):
"""
Natural logarithm, element-wise.
The natural logarithm `log` is the inverse of the exponential function,
so that `log(exp(x)) = x`. The natural logarithm is logarithm in base
`e`.
Parameters
----------
x : ndarray
Input value. Elements must be of real value.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.
Returns
-------
y : ndarray
The natural logarithm of `x`, element-wise.
This is a scalar if `x` is a scalar.
Notes
-----
Currently only supports data of real values and ``inf`` as input. Returns data of real value, ``inf``, ``-inf`` and
``nan`` according to the input.
This function differs from the original `numpy.log
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html>`_ in
the following aspects:
- Does not support complex number for now
- Input type does not support Python native iterables(list, tuple, ...).
- ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output.
- ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output.
- ``out`` param does not support scalar input case.
Examples
--------
>>> a = np.array([1, np.exp(1), np.exp(2), 0], dtype=np.float64)
>>> np.log(a)
array([ 0., 1., 2., -inf], dtype=float64)
>>> # Using default float32 dtype may lead to slightly different behavior:
>>> a = np.array([1, np.exp(1), np.exp(2), 0], dtype=np.float32)
>>> np.log(a)
array([ 0., 0.99999994, 2., -inf])
>>> np.log(1)
0.0
"""
return _pure_unary_func_helper(x, _api_internal.log, _np.log, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def degrees(x, out=None, **kwargs):
"""
Convert angles from radians to degrees.
Parameters
----------
x : ndarray
Input value. Elements must be of real value.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape and dtype as input ndarray.
If not provided or `None`, a freshly-allocated array is returned.
Returns
-------
y : ndarray
The corresponding degree values; if `out` was supplied this is a
reference to it.
This is a scalar if `x` is a scalar.
Notes
-------
This function differs from the original `numpy.degrees
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.degrees.html>`_ in
the following aspects:
- Input type does not support Python native iterables(list, tuple, ...). Only ndarray is supported.
- ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output.
- ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output.
- ``out`` param does not support scalar input case.
Examples
--------
>>> rad = np.arange(12.) * np.pi / 6
>>> np.degrees(rad)
array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.])
>>> # Use specified ``out`` ndarray:
>>> out = np.zeros((rad.shape))
>>> np.degrees(rad, out)
array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.])
>>> out
array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.])
"""
return _pure_unary_func_helper(x, _api_internal.degrees, _np.degrees, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def rad2deg(x, out=None, **kwargs):
r"""
Convert angles from radians to degrees.
Parameters
----------
x : ndarray or scalar
Angles in degrees.
out : ndarray or None, optional
A location into which the result is stored. If not provided or `None`,
a freshly-allocated array is returned.
Returns
-------
y : ndarray or scalar
The corresponding angle in radians.
This is a scalar if `x` is a scalar.
Notes
-----
"rad2deg(x)" is "x *180 / pi".
This function differs from the original numpy.arange in the following aspects:
- Only support float32 and float64.
- `out` must be in the same size of input.
Examples
--------
>>> np.rad2deg(np.pi/2)
90.0
"""
return _pure_unary_func_helper(x, _api_internal.rad2deg, _np.rad2deg, out=out)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def rint(x, out=None, **kwargs):
"""
Round elements of the array to the nearest integer.
Parameters
----------
x : ndarray or scalar
Input array.
out : ndarray or None
A location into which the result is stored.
If provided, it must have the same shape and type as the input.
If not provided or None, a freshly-allocated array is returned.
Returns
-------
out : ndarray or scalar
Output array is same shape and type as x. This is a scalar if x is a scalar.
Notes
-----
This function differs from the original `numpy.rint
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.rint.html>`_ in
the following way(s):
- only ndarray or scalar is accpted as valid input, tuple of ndarray is not supported
- broadcasting to `out` of different shape is currently not supported
- when input is plain python numerics, the result will not be stored in the `out` param
Examples
--------
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.rint(a)
array([-2., -2., -0., 0., 1., 2., 2.])
"""
return _pure_unary_func_helper(x, _api_internal.rint, _np.rint, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def log2(x, out=None, **kwargs):
"""
Base-2 logarithm of x.
Parameters
----------
x : ndarray or scalar
Input values.
out : ndarray or None
A location into which the result is stored.
If provided, it must have the same shape and type as the input.
If not provided or None, a freshly-allocated array is returned.
Returns
-------
y : ndarray
The logarithm base two of `x`, element-wise.
This is a scalar if `x` is a scalar.
Notes
-----
This function differs from the original `numpy.log2
<https://www.google.com/search?q=numpy+log2>`_ in
the following way(s):
- only ndarray or scalar is accpted as valid input, tuple of ndarray is not supported
- broadcasting to `out` of different shape is currently not supported
- when input is plain python numerics, the result will not be stored in the `out` param
Examples
--------
>>> x = np.array([0, 1, 2, 2**4])
>>> np.log2(x)
array([-inf, 0., 1., 4.])
"""
return _pure_unary_func_helper(x, _api_internal.log2, _np.log2, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def log1p(x, out=None, **kwargs):
"""
Return the natural logarithm of one plus the input array, element-wise.
Calculates ``log(1 + x)``.
Parameters
----------
x : ndarray or scalar
Input array.
out : ndarray or None
A location into which the result is stored. If provided, it
must have a shape that the inputs fill into. If not provided
or None, a freshly-allocated array is returned. The dtype of the
output and input must be the same.
Returns
-------
y : ndarray or scalar
Natural logarithm of 1 + x, element-wise. This is a scalar
if x is a scalar.
Notes
-----
For real-valued input, `log1p` is accurate also for `x` so small
that `1 + x == 1` in floating-point accuracy.
Logarithm is a multivalued function: for each `x` there is an infinite
number of `z` such that `exp(z) = 1 + x`. The convention is to return
the `z` whose imaginary part lies in `[-pi, pi]`.
For real-valued input data types, `log1p` always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields ``nan`` and sets the `invalid` floating point error flag.
cannot support complex-valued input.
Examples
--------
>>> np.log1p(1e-99)
1e-99
>>> a = np.array([3, 4, 5])
>>> np.log1p(a)
array([1.3862944, 1.609438 , 1.7917595])
"""
return _pure_unary_func_helper(x, _api_internal.log1p, _np.log1p, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def radians(x, out=None, **kwargs):
"""
Convert angles from degrees to radians.
Parameters
----------
x : ndarray or scalar
Input array in degrees.
out : ndarray or None
A location into which the result is stored.
If provided, it must have the same shape and type as the input.
If not provided or None, a freshly-allocated array is returned.
Returns
-------
y : ndarray
The corresponding radian values. This is a scalar if x is a scalar.
Notes
-----
This function differs from the original `numpy.radians
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.radians.html>`_ in
the following way(s):
- only ndarray or scalar is accpted as valid input, tuple of ndarray is not supported
- broadcasting to `out` of different shape is currently not supported
- when input is plain python numerics, the result will not be stored in the `out` param
Examples
--------
>>> deg = np.arange(12.) * 30.
>>> np.radians(deg)
array([0. , 0.5235988, 1.0471976, 1.5707964, 2.0943952, 2.6179938,
3.1415927, 3.6651914, 4.1887903, 4.712389 , 5.2359877, 5.7595863],
dtype=float32)
"""
return _pure_unary_func_helper(x, _api_internal.radians, _np.radians, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def deg2rad(x, out=None, **kwargs):
r"""
Convert angles from degrees to radians.
Parameters
----------
x : ndarray or scalar
Angles in degrees.
out : ndarray or None, optional
A location into which the result is stored. If not provided or `None`,
a freshly-allocated array is returned.
Returns
-------
y : ndarray or scalar
The corresponding angle in radians.
This is a scalar if `x` is a scalar.
Notes
-----
"deg2rad(x)" is "x * pi / 180".
This function differs from the original numpy.arange in the following aspects:
- Only support float32 and float64.
- `out` must be in the same size of input.
Examples
--------
>>> np.deg2rad(180)
3.1415927
"""
return _pure_unary_func_helper(x, _api_internal.deg2rad, _np.deg2rad, out=out)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def reciprocal(x, out=None, **kwargs):
r"""
Return the reciprocal of the argument, element-wise.
Calculates ``1/x``.
Parameters
----------
x : ndarray or scalar
The values whose reciprocals are required.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape as the input.
If not provided or None, a freshly-allocated array is returned.
Returns
-------
y : ndarray or scalar
Output array is same shape and type as x. This is a scalar if x is a scalar.
Examples
--------
>>> np.reciprocal(2.)
0.5
>>> x = np.array([1, 2., 3.33])
>>> np.reciprocal(x)
array([1. , 0.5 , 0.3003003])
Notes
-----
.. note::
This function is not designed to work with integers.
For integer arguments with absolute value larger than 1 the result is
always zero because of the way Python handles integer division. For
integer zero the result is an overflow.
The output `ndarray` has the same `device` as the input `ndarray`.
This function differs from the original `numpy.reciprocal
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.reciprocal.html>`_ in
the following aspects:
- Only support ndarray and scalar now.
- `where` argument is not supported.
"""
return _pure_unary_func_helper(x, _api_internal.reciprocal, _np.reciprocal, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def square(x, out=None, **kwargs):
r"""
Return the element-wise square of the input.
Parameters
----------
x : ndarray or scalar
The values whose squares are required.
out : ndarray or None, optional
A location into which the result is stored.
If provided, it must have the same shape as the input.
If not provided or None, a freshly-allocated array is returned.
Returns
-------
y : ndarray or scalar
Output array is same shape and type as x. This is a scalar if x is a scalar.
Examples
--------
>>> np.square(2.)
4.0
>>> x = np.array([1, 2., -1])
>>> np.square(x)
array([1., 4., 1.])
Notes
-----
The output `ndarray` has the same `device` as the input `ndarray`.
This function differs from the original `numpy.square
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.square.html>`_ in
the following aspects:
- Only support ndarray and scalar now.
- `where` argument is not supported.
- Complex input is not supported.
"""
return _pure_unary_func_helper(x, _api_internal.square, _np.square, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def negative(x, out=None, **kwargs):
r"""
Numerical negative, element-wise.
Parameters:
------------
x : ndarray or scalar
Input array.
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored.
Returns:
---------
y : ndarray or scalar
Returned array or scalar: y = -x. This is a scalar if x is a scalar.
Examples:
---------
>>> np.negative(1)
-1
"""
return _pure_unary_func_helper(x, _api_internal.negative, _np.negative, out=out)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def positive(x, out=None, **kwargs):
r"""
Computes the numerical positive of each element `x_i` (i.e.,`y_i = +x_i`)
of the input array x .
Parameters
----------
x : ndarray or scalar
Input array.
Returns
-------
y : ndarray or scalar
Returned array or scalar: y = +x. This is a scalar if x is a scalar.
Notes
-----
Equivalent to `x.copy()`, but only defined for types that support arithmetic.
Examples
--------
>>> x1 = np.array(([1., -1.]))
>>> np.positive(x1)
array([ 1., -1.])
>>> +x1
array([ 1., -1.])
"""
if out is x:
return x
return _pure_unary_func_helper(x, _api_internal.copy, _np.positive, out=out)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def fix(x, out=None, **kwargs):
r"""
Round an array of floats element-wise to nearest integer towards zero.
The rounded values are returned as floats.
Parameters:
----------
x : ndarray
An array of floats to be rounded
out : ndarray, optional
Output array
Returns:
-------
y : ndarray of floats
Examples
---------
>>> np.fix(3.14)
3
"""
return _pure_unary_func_helper(x, _api_internal.fix, _np.fix, out=out)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def tan(x, out=None, **kwargs):
r"""
Compute tangent element-wise.
Equivalent to np.sin(x)/np.cos(x) element-wise.
Parameters:
----------
x : ndarray
Input array.
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided,
it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.
where : ndarray, optional
Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.
Returns:
-------
y : ndarray
The corresponding tangent values. This is a scalar if x is a scalar.
Examples:
---------
>>> np.tan(0.5)
0.5463024898437905
"""
return _pure_unary_func_helper(x, _api_internal.tan, _np.tan, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def ceil(x, out=None, **kwargs):
r"""
Return the ceiling of the input, element-wise.
The ceil of the ndarray `x` is the smallest integer `i`, such that
`i >= x`. It is often denoted as :math:`\lceil x \rceil`.
Parameters
----------
x : ndarray or scalar
Input array.
out : ndarray or None
A location into which the result is stored. If provided, it
must have a same shape that the inputs fill into. If not provided
or None, a freshly-allocated array is returned. The dtype of the
output and input must be the same.
Returns
-------
y : ndarray or scalar
The ceiling of each element in `x`, with `float` dtype.
This is a scalar if `x` is a scalar.
Examples
--------
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.ceil(a)
array([-1., -1., -0., 1., 2., 2., 2.])
>>> #if you use parameter out, x and out must be ndarray.
>>> a = np.array(1)
>>> np.ceil(np.array(3.5), a)
array(4.)
>>> a
array(4.)
"""
if isinstance(x, NDArray) and _np.issubdtype(x.dtype, _np.integer):
return x
return _pure_unary_func_helper(x, _api_internal.ceil, _np.ceil, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def floor(x, out=None, **kwargs):
r"""
Return the floor of the input, element-wise.
The floor of the ndarray `x` is the largest integer `i`, such that
`i <= x`. It is often denoted as :math:`\lfloor x \rfloor`.
Parameters
----------
x : ndarray or scalar
Input array.
out : ndarray or None
A location into which the result is stored. If provided, it
must have a same shape that the inputs fill into. If not provided
or None, a freshly-allocated array is returned. The dtype of the
output and input must be the same.
Returns
-------
y : ndarray or scalar
The floor of each element in `x`, with `float` dtype.
This is a scalar if `x` is a scalar.
Examples
--------
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.floor(a)
array([-2., -2., -1., 0., 1., 1., 2.])
>>> #if you use parameter out, x and out must be ndarray.
>>> a = np.array(1)
>>> np.floor(np.array(3.5), a)
array(3.)
>>> a
array(3.)
"""
if isinstance(x, NDArray) and _np.issubdtype(x.dtype, _np.integer):
return x
return _pure_unary_func_helper(x, _api_internal.floor, _np.floor, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def bitwise_not(x, out=None, **kwargs):
r"""
Compute bit-wise inversion, or bit-wise NOT, element-wise.
Computes the bit-wise NOT of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator ``~``.
Parameters
----------
x : array_like
Only integer and boolean types are handled.
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or `None`,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.
Returns
-------
out : ndarray or scalar
Result.
This is a scalar if `x` is a scalar.
See Also
--------
bitwise_and, bitwise_or, bitwise_xor
logical_not
binary_repr :
Return the binary representation of the input number as a string.
Examples
--------
We've seen that 13 is represented by ``00001101``.
The invert or bit-wise NOT of 13 is then:
>>> x = np.invert(np.array(13, dtype=np.uint8))
>>> x
242
>>> np.binary_repr(x, width=8)
'11110010'
Notes
-----
`bitwise_not` is an alias for `invert`:
>>> np.bitwise_not is np.invert
True
"""
return _pure_unary_func_helper(x, _api_internal.bitwise_not, _np.bitwise_not, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def invert(x, out=None, **kwargs):
r"""
Compute bit-wise inversion, or bit-wise NOT, element-wise.
Computes the bit-wise NOT of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator ``~``.
Parameters
----------
x : array_like
Only integer and boolean types are handled.
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or `None`,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.
Returns
-------
out : ndarray or scalar
Result.
This is a scalar if `x` is a scalar.
See Also
--------
bitwise_and, bitwise_or, bitwise_xor
logical_not
binary_repr :
Return the binary representation of the input number as a string.
Examples
--------
We've seen that 13 is represented by ``00001101``.
The invert or bit-wise NOT of 13 is then:
>>> x = np.invert(np.array(13, dtype=np.uint8))
>>> x
242
>>> np.binary_repr(x, width=8)
'11110010'
Notes
-----
`bitwise_not` is an alias for `invert`:
>>> np.bitwise_not is np.invert
True
"""
return _pure_unary_func_helper(x, _api_internal.bitwise_not, _np.bitwise_not, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def trunc(x, out=None, **kwargs):
r"""
Return the truncated value of the input, element-wise.
The truncated value of the scalar `x` is the nearest integer `i` which
is closer to zero than `x` is. In short, the fractional part of the
signed number `x` is discarded.
Parameters
----------
x : ndarray or scalar
Input data.
out : ndarray or None, optional
A location into which the result is stored.
Returns
-------
y : ndarray or scalar
The truncated value of each element in `x`.
This is a scalar if `x` is a scalar.
Notes
-----
This function differs from the original numpy.trunc in the following aspects:
- Do not support `where`, a parameter in numpy which indicates where to calculate.
- Cannot cast type automatically. Dtype of `out` must be same as the expected one.
- Cannot broadcast automatically. Shape of `out` must be same as the expected one.
- If `x` is plain python numeric, the result won't be stored in out.
Examples
--------
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.trunc(a)
array([-1., -1., -0., 0., 1., 1., 2.])
"""
if isinstance(x, NDArray) and _np.issubdtype(x.dtype, _np.integer):
return x
return _pure_unary_func_helper(x, _api_internal.trunc, _np.trunc, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def logical_not(x, out=None, **kwargs):
r"""
Compute the truth value of NOT x element-wise.
Parameters
----------
x : ndarray or scalar
Logical NOT is applied to the elements of `x`.
out : ndarray or None, optional
A location into which the result is stored.
Returns
-------
y : bool or ndarray of bool
Boolean result with the same shape as `x` of the NOT operation
on elements of `x`.
This is a scalar if `x` is a scalar.
Notes
-----
This function differs from the original numpy.logical_not in the following aspects:
- Do not support `where`, a parameter in numpy which indicates where to calculate.
- Cannot cast type automatically. Dtype of `out` must be same as the expected one.
- Cannot broadcast automatically. Shape of `out` must be same as the expected one.
- If `x` is plain python numeric, the result won't be stored in out.
Examples
--------
>>> x= np.array([True, False, 0, 1])
>>> np.logical_not(x)
array([False, True, True, False])
>>> x = np.arange(5)
>>> np.logical_not(x<3)
array([False, False, False, True, True])
"""
return _pure_unary_func_helper(x, _api_internal.logical_not, _np.logical_not, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def arcsinh(x, out=None, **kwargs):
r"""
Inverse hyperbolic sine, element-wise.
Parameters
----------
x : ndarray or scalar
Input array.
out : ndarray or None, optional
A location into which the result is stored.
Returns
-------
arcsinh : ndarray
Array of the same shape as `x`.
This is a scalar if `x` is a scalar.
Notes
-----
`arcsinh` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that `sinh(z) = x`.
For real-valued input data types, `arcsinh` always returns real output.
For each value that cannot be expressed as a real number or infinity, it
yields ``nan`` and sets the `invalid` floating point error flag.
This function differs from the original numpy.arcsinh in the following aspects:
- Do not support `where`, a parameter in numpy which indicates where to calculate.
- Do not support complex-valued input.
- Cannot cast type automatically. DType of `out` must be same as the expected one.
- Cannot broadcast automatically. Shape of `out` must be same as the expected one.
- If `x` is plain python numeric, the result won't be stored in out.
Examples
--------
>>> a = np.array([3.2, 5.0])
>>> np.arcsinh(a)
array([1.8309381, 2.2924316])
>>> np.arcsinh(1)
0.0
"""
return _pure_unary_func_helper(x, _api_internal.arcsinh, _np.arcsinh, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def arccosh(x, out=None, **kwargs):
r"""
Inverse hyperbolic cosine, element-wise.
Parameters
----------
x : ndarray or scalar
Input array.
out : ndarray or None, optional
A location into which the result is stored.
Returns
-------
arccosh : ndarray
Array of the same shape as `x`.
This is a scalar if `x` is a scalar.
Notes
-----
`arccosh` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that `cosh(z) = x`.
For real-valued input data types, `arccosh` always returns real output.
For each value that cannot be expressed as a real number or infinity, it
yields ``nan`` and sets the `invalid` floating point error flag.
This function differs from the original numpy.arccosh in the following aspects:
- Do not support `where`, a parameter in numpy which indicates where to calculate.
- Do not support complex-valued input.
- Cannot cast type automatically. Dtype of `out` must be same as the expected one.
- Cannot broadcast automatically. Shape of `out` must be same as the expected one.
- If `x` is plain python numeric, the result won't be stored in out.
Examples
--------
>>> a = np.array([3.2, 5.0])
>>> np.arccosh(a)
array([1.8309381, 2.2924316])
>>> np.arccosh(1)
0.0
"""
return _pure_unary_func_helper(x, _api_internal.arccosh, _np.arccosh, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
@wrap_np_unary_func
def arctanh(x, out=None, **kwargs):
r"""
Inverse hyperbolic tangent, element-wise.
Parameters
----------
x : ndarray or scalar
Input array.
out : ndarray or None, optional
A location into which the result is stored.
Returns
-------
arctanh : ndarray
Array of the same shape as `x`.
This is a scalar if `x` is a scalar.
Notes
-----
`arctanh` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that `tanh(z) = x`.
For real-valued input data types, `arctanh` always returns real output.
For each value that cannot be expressed as a real number or infinity, it
yields ``nan`` and sets the `invalid` floating point error flag.
This function differs from the original numpy.arctanh in the following aspects:
- Do not support `where`, a parameter in numpy which indicates where to calculate.
- Do not support complex-valued input.
- Cannot cast type automatically. Dtype of `out` must be same as the expected one.
- Cannot broadcast automatically. Shape of `out` must be same as the expected one.
- If `x` is plain python numeric, the result won't be stored in out.
Examples
--------
>>> a = np.array([0.0, -0.5])
>>> np.arctanh(a)
array([0., -0.54930615])
>>> np.arctanh(0.0)
0.0
"""
return _pure_unary_func_helper(x, _api_internal.arctanh, _np.arctanh, out=out, **kwargs)
@set_module('mxnet.ndarray.numpy')
def tile(A, reps):
r"""
Construct an array by repeating A the number of times given by reps.
If `reps` has length ``d``, the result will have dimension of
``max(d, A.ndim)``.
If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new
axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication,
or shape (1, 1, 3) for 3-D replication. If this is not the desired
behavior, promote `A` to d-dimensions manually before calling this
function.
If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it.
Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as
(1, 1, 2, 2).
Parameters
----------
A : ndarray or scalar
An input array or a scalar to repeat.
reps : a single integer or tuple of integers
The number of repetitions of `A` along each axis.
Returns
-------
c : ndarray
The tiled output array.
Examples
--------
>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0., 1., 2., 0., 1., 2.])
>>> np.tile(a, (2, 2))
array([[0., 1., 2., 0., 1., 2.],
[0., 1., 2., 0., 1., 2.]])
>>> np.tile(a, (2, 1, 2))
array([[[0., 1., 2., 0., 1., 2.]],
[[0., 1., 2., 0., 1., 2.]]])
>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2)
array([[1., 2., 1., 2.],
[3., 4., 3., 4.]])
>>> np.tile(b, (2, 1))
array([[1., 2.],
[3., 4.],
[1., 2.],
[3., 4.]])
>>> c = np.array([1,2,3,4])
>>> np.tile(c,(4,1))
array([[1., 2., 3., 4.],
[1., 2., 3., 4.],
[1., 2., 3., 4.],
[1., 2., 3., 4.]])
Scalar as input:
>>> np.tile(2, 3)
array([2, 2, 2]) # repeating integer `2`
"""
if isinstance(A, numeric_types):
return _np.tile(A, reps)
elif isinstance(A, NDArray):
return _api_internal.tile(A, reps)
else:
raise TypeError('type {} not supported'.format(str(type(A))))
@set_module('mxnet.ndarray.numpy')
def transpose(a, axes=None):
"""
Permute the dimensions of an array.
Parameters
----------
a : ndarray
Input array.
axes : list of ints, optional
By default, reverse the dimensions,
otherwise permute the axes according to the values given.
Returns
-------
p : ndarray
a with its axes permuted.
Notes
-----
This function differs from the original `numpy.transpose
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html>`_ in
the following way(s):
- only ndarray is accepted as valid input, python iterables are not supported
- the operator always returns an `ndarray` that does not share the memory with the input
Examples
--------
>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0., 1.],
[2., 3.]])
>>> np.transpose(x)
array([[0., 2.],
[1., 3.]])
>>> x = np.ones((1, 2, 3))
>>> np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)
"""
return _api_internal.transpose(a, axes)
@set_module('mxnet.ndarray.numpy')
def repeat(a, repeats, axis=None):
"""
Repeat elements of an array.
Parameters
----------
a : array_like
Input array.
repeats : int
The number of repetitions for each element.
axis : int, optional
The axis along which to repeat values. By default, use the
flattened input array, and return a flat output array.
Returns
-------
repeated_array : ndarray
Output array which has the same shape as `a`, except along
the given axis.
See Also
--------
tile : Tile an array.
Examples
--------
>>> np.repeat(3, 4)
array([3, 3, 3, 3])
>>> x = np.array([[1,2],[3,4]])
>>> np.repeat(x, 2)