blob: 3ea3517deb89c5109e72bba2b879292ab278a62c [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy as np
import mxnet as mx
import mxnet.ndarray as nd
def nd_forward_backward_and_profile(op, runs, **kwargs):
"""Helper function to run a given NDArray operator (op) for 'runs' number of times with
given args and kwargs. Executes both forward and backward pass.
NOTE: This is a sync call and waits for all the operations execution to complete.
Parameters
----------
op: Str
NDArray operator (Function reference) to execute. Example: mx.nd.add
runs: int
Number of times to execute the operation
kwargs:
Key value arguments for the NDArray operator (op) being executed.
Returns
-------
any results from NDArray operation execution
"""
for _ in range(runs):
with mx.autograd.record():
args = []
# need to create a new dictionary because can't update dict while iterating
kwargs_new = dict()
for key in kwargs:
# separate positional args from key-worded args
if key.startswith("args"):
args.append(kwargs[key])
else:
kwargs_new[key]=kwargs[key]
# check for positional args
if len(args):
res = op(*args, **kwargs_new)
else:
res = op(**kwargs_new)
res.backward()
nd.waitall()
return res
def nd_forward_and_profile(op, runs, **kwargs):
"""Helper function to run a given NDArray operator (op) for 'runs' number of times with
given args and kwargs. Executes ONLY forward pass.
NOTE: This is a sync call and waits for all the operations execution to complete.
Parameters
----------
op: Str
NDArray operator (Function reference) to execute. Example: mx.nd.add
runs: int
Number of time to execute the operation
kwargs:
Key value arguments for the NDArray operator (op) being executed.
Returns
-------
any results from NDArray operation execution
"""
for _ in range(runs):
args = []
# need to create a new dictionary because can't update dict while iterating
kwargs_new = dict()
for key in kwargs:
# separate positional args from key-worded args
if key.startswith("args"):
args.append(kwargs[key])
else:
kwargs_new[key]=kwargs[key]
# check for positional args
if len(args):
res = op(*args, **kwargs_new)
else:
res = op(**kwargs_new)
nd.waitall()
return res
def get_mx_ndarray(ctx, in_tensor, dtype, initializer, attach_grad=True):
"""Helper function to prepare a MXNet NDArray tensor in given Context (ctx) of type (dtype) with given
initializer. You can get a new Tensor by providing only "Shape" or "Numpy NDArray" or another MXNet NDArray as
"in_tensor".
NOTE: This is a sync call and waits for the Tensor to be created.
Parameters
----------
ctx: mx.ctx, default mx.cpu()
Context of the new MXNet NDArray Tensor.
in_tensor: Numpy NDArray or MXNet NDArray or Tuple of shape
Can be a tuple of shape or Numpy NDArray or MXNet NDArray.
dtype: str
Precision or Dtype of the expected Tensor. Ex: "float32", "Int64"
initializer:
Function reference to the initialize to use. Ex: mx.nd.random.normal, mx.nd.zeros
attach_grad: Boolean, default True
To attach a gradient for the Tensor. Default is True.
Returns
-------
MXNet NDArray Tensor.
"""
if isinstance(in_tensor, int) or isinstance(in_tensor, float):
return in_tensor
if isinstance(in_tensor, tuple):
tensor = initializer(ctx=ctx, shape=in_tensor, dtype=dtype)
elif isinstance(in_tensor, list):
tensor = nd.array(in_tensor, ctx=ctx, dtype=dtype)
elif isinstance(in_tensor, np.ndarray):
tensor = nd.array(in_tensor)
elif isinstance(in_tensor, mx.np.ndarray):
tensor = in_tensor.as_nd_ndarray()
elif isinstance(in_tensor, nd.NDArray):
tensor = in_tensor.as_in_context(ctx)
else:
raise ValueError("Invalid input type for creating input tensor. Input can be tuple() of shape or Numpy Array or"
" MXNet NDArray. Given - ", in_tensor)
if attach_grad:
tensor.attach_grad()
tensor.wait_to_read()
return tensor