Note: this example use The BSDS500 Dataset which is copyright Berkeley Computer Vision Group. For more details, see dataset website
This example trains a convolutional neural network to enhance the resolution of images (also known as superresolution). The script takes the following commandline arguments:
Super-resolution using an efficient sub-pixel convolution neural network. optional arguments: -h, --help show this help message and exit --upscale_factor UPSCALE_FACTOR super resolution upscale factor. default is 3. --batch_size BATCH_SIZE training batch size, per device. default is 4. --test_batch_size TEST_BATCH_SIZE test batch size --epochs EPOCHS number of training epochs --lr LR learning Rate. default is 0.001. --use-gpu whether to use GPU. --seed SEED random seed to use. Default=123 --resolve_img RESOLVE_IMG input image to use
Once the network is trained you can use the following command to increase the resolution of your image:
python super_resolution.py --resolve_img myimage.jpg
Contour Detection and Hierarchical Image Segmentation P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. IEEE TPAMI, Vol. 33, No. 5, pp. 898-916, May 2011. PDF BibTex