Note: this example use The BSDS500 Dataset which is copyright Berkeley Computer Vision Group. For more details, see dataset website
This example trains a convolutional neural network to enhance the resolution of images (also known as superresolution). The script takes the following commandline arguments:
Super-resolution using an efficient sub-pixel convolution neural network.
optional arguments:
-h, --help show this help message and exit
--upscale_factor UPSCALE_FACTOR
super resolution upscale factor. default is 3.
--batch_size BATCH_SIZE
training batch size, per device. default is 4.
--test_batch_size TEST_BATCH_SIZE
test batch size
--epochs EPOCHS number of training epochs
--lr LR learning Rate. default is 0.001.
--use-gpu whether to use GPU.
--seed SEED random seed to use. Default=123
--resolve_img RESOLVE_IMG
input image to use
Once the network is trained you can use the following command to increase the resolution of your image:
python super_resolution.py --resolve_img myimage.jpg
Contour Detection and Hierarchical Image Segmentation P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. IEEE TPAMI, Vol. 33, No. 5, pp. 898-916, May 2011. PDF BibTex