[v1.9.x][submodule] Upgrade oneDNN to the top of rls-v2.4 branch (#20994)
diff --git a/3rdparty/mkldnn b/3rdparty/mkldnn
index 145c4b5..5818c40 160000
--- a/3rdparty/mkldnn
+++ b/3rdparty/mkldnn
@@ -1 +1 @@
-Subproject commit 145c4b50196ac90ec1b946fb80cb5cef6e7d2d35
+Subproject commit 5818c40f07bdb6307f9bc64e929836fe036da644
diff --git a/src/operator/nn/mkldnn/mkldnn_convolution.cc b/src/operator/nn/mkldnn/mkldnn_convolution.cc
index 829b3e0..856ced0 100644
--- a/src/operator/nn/mkldnn/mkldnn_convolution.cc
+++ b/src/operator/nn/mkldnn/mkldnn_convolution.cc
@@ -112,41 +112,35 @@
int mask = (param.requantize_scales.size() > 1) ? 2 : 0;
attr.set_output_scales(mask, param.requantize_scales);
}
- auto GetConvFwdPd =
- [¶m, &data, &weights, &output, &attr](const mkldnn::convolution_forward::desc& desc) {
- auto engine = CpuEngine::Get()->get_engine();
- try {
- // MKLDNN introduced padded formats since 0.15 which require more memory compared to the
- // actual size of the tensor. Currently, MKLDNN operators still reuse memory from memory
- // planning, so here we need to select a suboptimal kernel for computation that has the
- // expected memory size requirements
- auto conv_pd =
- std::make_shared<mkldnn::convolution_forward::primitive_desc>(desc, attr, engine);
- while (conv_pd->dst_desc().get_size() != GetArraySize(output) ||
- conv_pd->src_desc().get_size() != GetArraySize(data) ||
- (!param.mkldnn_param.quantized &&
- conv_pd->weights_desc().get_size() != GetArraySize(weights)) ||
- // With the upgrade of MKLDNN to version 2.4+
- // tests/python/mkl/test_subgraph.py::test_pos_conv_add started failing. Switching
- // away from primitive with weight mkldnn::format_tag ABcd4b16a4b in order to
- // temporarily fix the issue until full fix arrives. Tracking issue:
- // https://github.com/apache/incubator-mxnet/issues/20826.
- (param.mkldnn_param.quantized && conv_pd->weights_desc().dims()[1] < 4 &&
- conv_pd->weights_desc().data.padded_dims[1] == 16)) {
- // next_impl() will visit desc and engine, please make sure they are still alive here.
- CHECK(conv_pd->next_impl()) << "No convolution implementation for this request.";
- }
- return conv_pd;
- } catch (mkldnn::error& e) {
- if (e.status == mkldnn_unimplemented && param.mkldnn_param.quantized) {
- LOG(ERROR) << "AVX512-BW support or Intel(R) MKL dependency is "
- "required for int8 convolution";
- } else {
- LOG(ERROR) << e.message;
- }
- throw;
- }
- };
+ auto GetConvFwdPd = [¶m, &data, &weights, &output, &attr](
+ const mkldnn::convolution_forward::desc& desc) {
+ auto engine = CpuEngine::Get()->get_engine();
+ try {
+ // MKLDNN introduced padded formats since 0.15 which require more memory compared to the
+ // actual size of the tensor. Currently, MKLDNN operators still reuse memory from memory
+ // planning, so here we need to select a suboptimal kernel for computation that has the
+ // expected memory size requirements
+ auto conv_pd =
+ std::make_shared<mkldnn::convolution_forward::primitive_desc>(desc, attr, engine);
+ while (
+ conv_pd->dst_desc().get_size() != GetArraySize(output) ||
+ conv_pd->src_desc().get_size() != GetArraySize(data) ||
+ (!param.mkldnn_param.quantized &&
+ conv_pd->weights_desc().get_size() != GetArraySize(weights))) {
+ // next_impl() will visit desc and engine, please make sure they are still alive here.
+ CHECK(conv_pd->next_impl()) << "No convolution implementation for this request.";
+ }
+ return conv_pd;
+ } catch (mkldnn::error& e) {
+ if (e.status == mkldnn_unimplemented && param.mkldnn_param.quantized) {
+ LOG(ERROR) << "AVX512-BW support or Intel(R) MKL dependency is "
+ "required for int8 convolution";
+ } else {
+ LOG(ERROR) << e.message;
+ }
+ throw;
+ }
+ };
if (param.conv_param.dilate.ndim() == 0 && bias_md_ptr == nullptr) {
mkldnn::convolution_forward::desc desc(prop, mkldnn::algorithm::convolution_direct, data_md,