| # MXNet - Scala API |
| |
| See the [MXNet Scala API Documentation](http://mxnet.io/api/scala/docs/index.html). |
| |
| MXNet supports the Scala programming language. The MXNet Scala package brings flexible and efficient GPU |
| computing and state-of-art deep learning to Scala. It enables you to write seamless tensor/matrix computation with multiple GPUs in Scala. It also lets you construct and customize the state-of-art deep learning models in Scala, |
| and apply them to tasks, such as image classification and data science challenges. |
| |
| You can perform tensor or matrix computation in pure Scala: |
| |
| ```scala |
| scala> import ml.dmlc.mxnet._ |
| import ml.dmlc.mxnet._ |
| |
| scala> val arr = NDArray.ones(2, 3) |
| arr: ml.dmlc.mxnet.NDArray = ml.dmlc.mxnet.NDArray@f5e74790 |
| |
| scala> arr.shape |
| res0: ml.dmlc.mxnet.Shape = (2,3) |
| |
| scala> (arr * 2).toArray |
| res2: Array[Float] = Array(2.0, 2.0, 2.0, 2.0, 2.0, 2.0) |
| |
| scala> (arr * 2).shape |
| res3: ml.dmlc.mxnet.Shape = (2,3) |
| ``` |
| |
| ## Resources |
| |
| * [MXNet Scala API Documentation](http://mxnet.io/api/scala/docs/index.html) |
| * [Handwritten Digit Classification in Scala](http://mxnet.io/tutorials/scala/mnist.html) |
| * [Neural Style in Scala on MXNet](https://github.com/dmlc/mxnet/blob/master/scala-package/examples/src/main/scala/ml/dmlc/mxnet/examples/neuralstyle/NeuralStyle.scala) |
| * [More Scala Examples](https://github.com/dmlc/mxnet/tree/master/scala-package/examples/src/main/scala/ml/dmlc/mxnet/examples) |