blob: 2499c2ab078cabe22944ae45cd2346062cd6bda4 [file] [log] [blame] [view]
Python Howto Examples
=====================
* [Configuring Net to get Multiple Ouputs](multiple_outputs.py)
* [Configuring Image Record Iterator](data_iter.py)
* Set break point in C++ code of the symbol using gdb under Linux:
* Build mxnet with following values:
```
DEBUG=1
CUDA=0 #to make sure convolution-inl.h will be used
CUDNN=0 #to make sure convolution-inl.h will be used
```
* run python under gdb: ```gdb --args python debug_conv.py```
* in gdb set break point on particular line of the code and run execution:
```
(gdb) break src/operator/convolution-inl.h:120
(gdb) run
Breakpoint 1, mxnet::op::ConvolutionOp<mshadow::cpu, float>::Forward (this=0x12219d0, ctx=..., in_data=std::vector of length 3, capacity 4 = {...}, req=std::vector of length 1, capacity 1 = {...}, out_data=std::vector of length 1, capacity 1 = {...},
aux_args=std::vector of length 0, capacity 0) at src/operator/./convolution-inl.h:121
121 data.shape_[1] / param_.num_group * param_.kernel[0] * param_.kernel[1]);
(gdb) list
116 }
117 Tensor<xpu, 4, DType> data = in_data[conv::kData].get<xpu, 4, DType>(s);
118 Shape<3> wmat_shape =
119 Shape3(param_.num_group,
120 param_.num_filter / param_.num_group,
121 data.shape_[1] / param_.num_group * param_.kernel[0] * param_.kernel[1]);
122 Tensor<xpu, 3, DType> wmat =
123 in_data[conv::kWeight].get_with_shape<xpu, 3, DType>(wmat_shape, s);
124 Tensor<xpu, 4, DType> out = out_data[conv::kOut].get<xpu, 4, DType>(s);
125 #if defined(__CUDACC__)
```