blob: 69486490194c6ca8003490c89ed657f9e6e7412d [file] [log] [blame]
/*!
* Copyright (c) 2017 by Contributors
* Xin Li yakumolx@gmail.com
*/
#include <chrono>
#include "mxnet-cpp/MxNetCpp.h"
using namespace std;
using namespace mxnet::cpp;
Symbol mlp(const vector<int> &layers) {
auto x = Symbol::Variable("X");
auto label = Symbol::Variable("label");
vector<Symbol> weights(layers.size());
vector<Symbol> biases(layers.size());
vector<Symbol> outputs(layers.size());
for (size_t i = 0; i < layers.size(); ++i) {
weights[i] = Symbol::Variable("w" + to_string(i));
biases[i] = Symbol::Variable("b" + to_string(i));
Symbol fc = FullyConnected(
i == 0? x : outputs[i-1], // data
weights[i],
biases[i],
layers[i]);
outputs[i] = i == layers.size()-1 ? fc : Activation(fc, ActivationActType::kRelu);
}
return SoftmaxOutput(outputs.back(), label);
}
int main(int argc, char** argv) {
const int image_size = 28;
const vector<int> layers{128, 64, 10};
const int batch_size = 100;
const int max_epoch = 10;
const float learning_rate = 0.1;
const float weight_decay = 1e-2;
auto train_iter = MXDataIter("MNISTIter")
.SetParam("image", "./mnist_data/train-images-idx3-ubyte")
.SetParam("label", "./mnist_data/train-labels-idx1-ubyte")
.SetParam("batch_size", batch_size)
.SetParam("flat", 1)
.CreateDataIter();
auto val_iter = MXDataIter("MNISTIter")
.SetParam("image", "./mnist_data/t10k-images-idx3-ubyte")
.SetParam("label", "./mnist_data/t10k-labels-idx1-ubyte")
.SetParam("batch_size", batch_size)
.SetParam("flat", 1)
.CreateDataIter();
auto net = mlp(layers);
Context ctx = Context::cpu(); // Use CPU for training
std::map<string, NDArray> args;
args["X"] = NDArray(Shape(batch_size, image_size*image_size), ctx);
args["label"] = NDArray(Shape(batch_size), ctx);
// Let MXNet infer shapes other parameters such as weights
net.InferArgsMap(ctx, &args, args);
// Initialize all parameters with uniform distribution U(-0.01, 0.01)
auto initializer = Uniform(0.01);
for (auto& arg : args) {
// arg.first is parameter name, and arg.second is the value
initializer(arg.first, &arg.second);
}
// Create sgd optimizer
Optimizer* opt = OptimizerRegistry::Find("sgd");
opt->SetParam("rescale_grad", 1.0/batch_size);
// Start training
for (int iter = 0; iter < max_epoch; ++iter) {
int samples = 0;
train_iter.Reset();
auto tic = chrono::system_clock::now();
while (train_iter.Next()) {
samples += batch_size;
auto data_batch = train_iter.GetDataBatch();
// Set data and label
args["X"] = data_batch.data;
args["label"] = data_batch.label;
// Create executor by binding parameters to the model
auto *exec = net.SimpleBind(ctx, args);
// Compute gradients
exec->Forward(true);
exec->Backward();
// Update parameters
exec->UpdateAll(opt, learning_rate, weight_decay);
// Remember to free the memory
delete exec;
}
auto toc = chrono::system_clock::now();
Accuracy acc;
val_iter.Reset();
while (val_iter.Next()) {
auto data_batch = val_iter.GetDataBatch();
args["X"] = data_batch.data;
args["label"] = data_batch.label;
auto *exec = net.SimpleBind(ctx, args);
// Forward pass is enough as no gradient is needed when evaluating
exec->Forward(false);
acc.Update(data_batch.label, exec->outputs[0]);
delete exec;
}
float duration = chrono::duration_cast<chrono::milliseconds>(toc - tic).count() / 1000.0;
LG << "Epoch: " << iter << " " << samples/duration << " samples/sec Accuracy: " << acc.Get();
}
MXNotifyShutdown();
return 0;
}