| /*! |
| * Copyright (c) 2017 by Contributors |
| * Xin Li yakumolx@gmail.com |
| */ |
| #include <chrono> |
| #include "mxnet-cpp/MxNetCpp.h" |
| |
| using namespace std; |
| using namespace mxnet::cpp; |
| |
| Symbol mlp(const vector<int> &layers) { |
| auto x = Symbol::Variable("X"); |
| auto label = Symbol::Variable("label"); |
| |
| vector<Symbol> weights(layers.size()); |
| vector<Symbol> biases(layers.size()); |
| vector<Symbol> outputs(layers.size()); |
| |
| for (size_t i = 0; i < layers.size(); ++i) { |
| weights[i] = Symbol::Variable("w" + to_string(i)); |
| biases[i] = Symbol::Variable("b" + to_string(i)); |
| Symbol fc = FullyConnected( |
| i == 0? x : outputs[i-1], // data |
| weights[i], |
| biases[i], |
| layers[i]); |
| outputs[i] = i == layers.size()-1 ? fc : Activation(fc, ActivationActType::kRelu); |
| } |
| |
| return SoftmaxOutput(outputs.back(), label); |
| } |
| |
| int main(int argc, char** argv) { |
| const int image_size = 28; |
| const vector<int> layers{128, 64, 10}; |
| const int batch_size = 100; |
| const int max_epoch = 10; |
| const float learning_rate = 0.1; |
| const float weight_decay = 1e-2; |
| |
| auto train_iter = MXDataIter("MNISTIter") |
| .SetParam("image", "./mnist_data/train-images-idx3-ubyte") |
| .SetParam("label", "./mnist_data/train-labels-idx1-ubyte") |
| .SetParam("batch_size", batch_size) |
| .SetParam("flat", 1) |
| .CreateDataIter(); |
| auto val_iter = MXDataIter("MNISTIter") |
| .SetParam("image", "./mnist_data/t10k-images-idx3-ubyte") |
| .SetParam("label", "./mnist_data/t10k-labels-idx1-ubyte") |
| .SetParam("batch_size", batch_size) |
| .SetParam("flat", 1) |
| .CreateDataIter(); |
| |
| auto net = mlp(layers); |
| |
| Context ctx = Context::cpu(); // Use CPU for training |
| |
| std::map<string, NDArray> args; |
| args["X"] = NDArray(Shape(batch_size, image_size*image_size), ctx); |
| args["label"] = NDArray(Shape(batch_size), ctx); |
| // Let MXNet infer shapes other parameters such as weights |
| net.InferArgsMap(ctx, &args, args); |
| |
| // Initialize all parameters with uniform distribution U(-0.01, 0.01) |
| auto initializer = Uniform(0.01); |
| for (auto& arg : args) { |
| // arg.first is parameter name, and arg.second is the value |
| initializer(arg.first, &arg.second); |
| } |
| |
| // Create sgd optimizer |
| Optimizer* opt = OptimizerRegistry::Find("sgd"); |
| opt->SetParam("rescale_grad", 1.0/batch_size); |
| |
| // Start training |
| for (int iter = 0; iter < max_epoch; ++iter) { |
| int samples = 0; |
| train_iter.Reset(); |
| |
| auto tic = chrono::system_clock::now(); |
| while (train_iter.Next()) { |
| samples += batch_size; |
| auto data_batch = train_iter.GetDataBatch(); |
| // Set data and label |
| args["X"] = data_batch.data; |
| args["label"] = data_batch.label; |
| |
| // Create executor by binding parameters to the model |
| auto *exec = net.SimpleBind(ctx, args); |
| // Compute gradients |
| exec->Forward(true); |
| exec->Backward(); |
| // Update parameters |
| exec->UpdateAll(opt, learning_rate, weight_decay); |
| // Remember to free the memory |
| delete exec; |
| } |
| auto toc = chrono::system_clock::now(); |
| |
| Accuracy acc; |
| val_iter.Reset(); |
| while (val_iter.Next()) { |
| auto data_batch = val_iter.GetDataBatch(); |
| args["X"] = data_batch.data; |
| args["label"] = data_batch.label; |
| auto *exec = net.SimpleBind(ctx, args); |
| // Forward pass is enough as no gradient is needed when evaluating |
| exec->Forward(false); |
| acc.Update(data_batch.label, exec->outputs[0]); |
| delete exec; |
| } |
| float duration = chrono::duration_cast<chrono::milliseconds>(toc - tic).count() / 1000.0; |
| LG << "Epoch: " << iter << " " << samples/duration << " samples/sec Accuracy: " << acc.Get(); |
| } |
| |
| MXNotifyShutdown(); |
| return 0; |
| } |