The module API, defined in the module (or simply mod) package (AI::MXNet::Module under the hood), provides an intermediate and high-level interface for performing computation with a AI::MXNet::Symbol or just mx->sym. One can roughly think a module is a machine which can execute a program defined by a Symbol.
The class AI::MXNet::Module is a commonly used module, which accepts a AI::MXNet::Symbol as the input:
pdl> $data = mx->symbol->Variable('data') pdl> $fc1 = mx->symbol->FullyConnected($data, name=>'fc1', num_hidden=>128) pdl> $act1 = mx->symbol->Activation($fc1, name=>'relu1', act_type=>"relu") pdl> $fc2 = mx->symbol->FullyConnected($act1, name=>'fc2', num_hidden=>10) pdl> $out = mx->symbol->SoftmaxOutput($fc2, name => 'softmax') pdl> $mod = mx->mod->Module($out) # create a module by given a Symbol
Assume there is a valid MXNet data iterator data. We can initialize the module:
pdl> $mod->bind(data_shapes=>$data->provide_data, label_shapes=>$data->provide_label) # create memory by given input shapes pdl> $mod->init_params() # initial parameters with the default random initializer
Now the module is able to compute. We can call high-level API to train and predict:
pdl> $mod->fit($data, num_epoch=>10, ...) # train pdl> $mod->predict($new_data) # predict on new data
or use intermediate APIs to perform step-by-step computations
pdl> $mod->forward($data_batch, is_train => 1) # forward on the provided data batch pdl> $mod->backward() # backward to calculate the gradients pdl> $mod->update() # update parameters using the default optimizer