| import mxnet as mx |
| |
| def get_symbol_atari(act_dim): |
| net = mx.symbol.Variable('data') |
| net = mx.symbol.Cast(data=net, dtype='float32') |
| net = mx.symbol.Convolution(data=net, name='conv1', kernel=(8, 8), stride=(4, 4), num_filter=16) |
| net = mx.symbol.Activation(data=net, name='relu1', act_type="relu") |
| net = mx.symbol.Convolution(data=net, name='conv2', kernel=(4, 4), stride=(2, 2), num_filter=32) |
| net = mx.symbol.Activation(data=net, name='relu2', act_type="relu") |
| net = mx.symbol.Flatten(data=net) |
| net = mx.symbol.FullyConnected(data=net, name='fc4', num_hidden=256) |
| net = mx.symbol.Activation(data=net, name='relu4', act_type="relu") |
| fc_policy = mx.symbol.FullyConnected(data=net, name='fc_policy', num_hidden=act_dim) |
| policy = mx.symbol.SoftmaxOutput(data=fc_policy, name='policy', out_grad=True) |
| entropy = mx.symbol.SoftmaxActivation(data=fc_policy, name='entropy') |
| value = mx.symbol.FullyConnected(data=net, name='fc_value', num_hidden=1) |
| value = mx.symbol.LinearRegressionOutput(data=value, name='value') |
| return mx.symbol.Group([policy, entropy, value]) |