The NDArray package (mxnet.ndarray) contains tensor operations similar to numpy.ndarray. The syntax is also similar, except for some additional calls for dealing with I/O and multiple devices.
Topics:
Create mxnet.ndarray as follows:
scala> import ml.dmlc.mxnet._ scala> // all-zero array of dimension 100x50 scala> val a = NDArray.zeros(100, 50) scala> // all-one array of dimension 256x32x128x1 scala> val b = NDArray.ones(256, 32, 128, 1) scala> // initialize array with contents, you can specify dimensions of array using Shape parameter while creating array. scala> val c = NDArray.array(Array(1, 2, 3, 4, 5, 6), shape = Shape(2, 3))
This is similar to the way you use numpy.
We provide some basic ndarray operations, like arithmetic and slice operations.
scala> import ml.dmlc.mxnet._ scala> val a = NDArray.zeros(100, 50) scala> a.shape ml.dmlc.mxnet.Shape = (100,50) scala> val b = NDArray.ones(100, 50) scala> // c and d will be calculated in parallel here! scala> val c = a + b scala> val d = a - b scala> // inplace operation, b's contents will be modified, but c and d won't be affected. scala> b += d
scala> import ml.dmlc.mxnet._ //Multiplication scala> val ndones = NDArray.ones(2, 1) scala> val ndtwos = ndones * 2 scala> ndtwos.toArray Array[Float] = Array(2.0, 2.0) scala> (ndones * ndones).toArray Array[Float] = Array(1.0, 1.0) scala> (ndtwos * ndtwos).toArray Array[Float] = Array(4.0, 4.0) scala> ndtwos *= ndtwos // inplace scala> ndtwos.toArray Array[Float] = Array(4.0, 4.0) //Division scala> val ndones = NDArray.ones(2, 1) scala> val ndzeros = ndones - 1f scala> val ndhalves = ndones / 2 scala> ndhalves.toArray Array[Float] = Array(0.5, 0.5) scala> (ndhalves / ndhalves).toArray Array[Float] = Array(1.0, 1.0) scala> (ndones / ndones).toArray Array[Float] = Array(1.0, 1.0) scala> (ndzeros / ndones).toArray Array[Float] = Array(0.0, 0.0) scala> ndhalves /= ndhalves scala> ndhalves.toArray Array[Float] = Array(1.0, 1.0)
scala> import ml.dmlc.mxnet._ scala> val a = NDArray.array(Array(1f, 2f, 3f, 4f, 5f, 6f), shape = Shape(3, 2)) scala> val a1 = a.slice(1) scala> assert(a1.shape === Shape(1, 2)) scala> assert(a1.toArray === Array(3f, 4f)) scala> val a2 = arr.slice(1, 3) scala> assert(a2.shape === Shape(2, 2)) scala> assert(a2.toArray === Array(3f, 4f, 5f, 6f))
scala> import ml.dmlc.mxnet._ scala> val arr1 = NDArray.array(Array(1f, 2f), shape = Shape(1, 2)) scala> val arr2 = NDArray.array(Array(3f, 4f), shape = Shape(2, 1)) scala> val res = NDArray.dot(arr1, arr2) scala> res.shape ml.dmlc.mxnet.Shape = (1,1) scala> res.toArray Array[Float] = Array(11.0)
You can use MXNet functions to save and load a list or dictionary of NDArrays from file systems, as follows:
scala> import ml.dmlc.mxnet._ scala> val a = NDArray.zeros(100, 200) scala> val b = NDArray.zeros(100, 200) scala> // save list of NDArrays scala> NDArray.save("/path/to/array/file", Array(a, b)) scala> // save dictionary of NDArrays to AWS S3 scala> NDArray.save("s3://path/to/s3/array", Map("A" -> a, "B" -> b)) scala> // save list of NDArrays to hdfs. scala> NDArray.save("hdfs://path/to/hdfs/array", Array(a, b)) scala> val from_file = NDArray.load("/path/to/array/file") scala> val from_s3 = NDArray.load("s3://path/to/s3/array") scala> val from_hdfs = NDArray.load("hdfs://path/to/hdfs/array")
The good thing about using the save and load interface is that you can use the format across all mxnet language bindings. They also already support Amazon S3 and HDFS.
Device information is stored in the mxnet.Context structure. When creating NDArray in MXNet, you can use the context argument (the default is the CPU context) to create arrays on specific devices as follows:
scala> import ml.dmlc.mxnet._ scala> val cpu_a = NDArray.zeros(100, 200) scala> cpu_a.context ml.dmlc.mxnet.Context = cpu(0) scala> val ctx = Context.gpu(0) scala> val gpu_b = NDArray.zeros(Shape(100, 200), ctx) scala> gpu_b.context ml.dmlc.mxnet.Context = gpu(0)
Currently, we do not allow operations among arrays from different contexts. To manually enable this, use the copyto member function to copy the content to different devices, and continue computation:
scala> import ml.dmlc.mxnet._ scala> val x = NDArray.zeros(100, 200) scala> val ctx = Context.gpu(0) scala> val y = NDArray.zeros(Shape(100, 200), ctx) scala> val z = x + y mxnet.base.MXNetError: [13:29:12] src/ndarray/ndarray.cc:33: Check failed: lhs.ctx() == rhs.ctx() operands context mismatch scala> val cpu_y = NDArray.zeros(100, 200) scala> y.copyto(cpu_y) scala> val z = x + cpu_y