|  | <!DOCTYPE html> | 
|  |  | 
|  | <html lang="en"> | 
|  | <head> | 
|  | <meta charset="utf-8"/> | 
|  | <meta content="IE=edge" http-equiv="X-UA-Compatible"/> | 
|  | <meta content="width=device-width, initial-scale=1" name="viewport"/> | 
|  | <title>Basics — mxnet  documentation</title> | 
|  | <link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/> | 
|  | <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/> | 
|  | <link href="../../_static/basic.css" rel="stylesheet" type="text/css"/> | 
|  | <link href="../../_static/pygments.css" rel="stylesheet" type="text/css"/> | 
|  | <link href="../../_static/mxnet.css" rel="stylesheet" type="text/css"> | 
|  | <script type="text/javascript"> | 
|  | var DOCUMENTATION_OPTIONS = { | 
|  | URL_ROOT:    '../../', | 
|  | VERSION:     '', | 
|  | COLLAPSE_INDEX: false, | 
|  | FILE_SUFFIX: '.html', | 
|  | HAS_SOURCE:  true, | 
|  | SOURCELINK_SUFFIX: '' | 
|  | }; | 
|  | </script> | 
|  | <script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script> | 
|  | <script src="../../_static/underscore.js" type="text/javascript"></script> | 
|  | <script src="../../_static/searchtools_custom.js" type="text/javascript"></script> | 
|  | <script src="../../_static/doctools.js" type="text/javascript"></script> | 
|  | <script src="../../_static/selectlang.js" type="text/javascript"></script> | 
|  | <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> | 
|  | <script type="text/javascript"> jQuery(function() { Search.loadIndex("/searchindex.js"); Search.init();}); </script> | 
|  | <script> | 
|  | (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ | 
|  | (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new | 
|  | Date();a=s.createElement(o), | 
|  | m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) | 
|  | })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); | 
|  |  | 
|  | ga('create', 'UA-96378503-1', 'auto'); | 
|  | ga('send', 'pageview'); | 
|  |  | 
|  | </script> | 
|  | <!-- --> | 
|  | <!-- <script type="text/javascript" src="../../_static/jquery.js"></script> --> | 
|  | <!-- --> | 
|  | <!-- <script type="text/javascript" src="../../_static/underscore.js"></script> --> | 
|  | <!-- --> | 
|  | <!-- <script type="text/javascript" src="../../_static/doctools.js"></script> --> | 
|  | <!-- --> | 
|  | <!-- <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> --> | 
|  | <!-- --> | 
|  | <link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"> | 
|  | </link></link></head> | 
|  | <body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document"> | 
|  | <div class="content-block"><div class="navbar navbar-fixed-top"> | 
|  | <div class="container" id="navContainer"> | 
|  | <div class="innder" id="header-inner"> | 
|  | <h1 id="logo-wrap"> | 
|  | <a href="../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a> | 
|  | </h1> | 
|  | <nav class="nav-bar" id="main-nav"> | 
|  | <a class="main-nav-link" href="../../install/index.html">Install</a> | 
|  | <a class="main-nav-link" href="../../tutorials/index.html">Tutorials</a> | 
|  | <span id="dropdown-menu-position-anchor"> | 
|  | <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a> | 
|  | <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> | 
|  | <li><a class="main-nav-link" href="../../gluon/index.html">About</a></li> | 
|  | <li><a class="main-nav-link" href="http://gluon.mxnet.io">Tutorials</a></li> | 
|  | </ul> | 
|  | </span> | 
|  | <span id="dropdown-menu-position-anchor"> | 
|  | <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a> | 
|  | <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> | 
|  | <li><a class="main-nav-link" href="../../api/python/index.html">Python</a></li> | 
|  | <li><a class="main-nav-link" href="../../api/scala/index.html">Scala</a></li> | 
|  | <li><a class="main-nav-link" href="../../api/r/index.html">R</a></li> | 
|  | <li><a class="main-nav-link" href="../../api/julia/index.html">Julia</a></li> | 
|  | <li><a class="main-nav-link" href="../../api/c++/index.html">C++</a></li> | 
|  | <li><a class="main-nav-link" href="../../api/perl/index.html">Perl</a></li> | 
|  | </ul> | 
|  | </span> | 
|  | <span id="dropdown-menu-position-anchor-docs"> | 
|  | <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a> | 
|  | <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs"> | 
|  | <li><a class="main-nav-link" href="../../faq/index.html">FAQ</a></li> | 
|  | <li><a class="main-nav-link" href="../../architecture/index.html">Architecture</a></li> | 
|  | <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example">Examples</a></li> | 
|  | <li><a class="main-nav-link" href="../../model_zoo/index.html">Model Zoo</a></li> | 
|  | </ul> | 
|  | </span> | 
|  | <a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a> | 
|  | <span id="dropdown-menu-position-anchor-community"> | 
|  | <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a> | 
|  | <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community"> | 
|  | <li><a class="main-nav-link" href="../../community/index.html">Community</a></li> | 
|  | <li><a class="main-nav-link" href="../../community/contribute.html">Contribute</a></li> | 
|  | <li><a class="main-nav-link" href="../../community/powered_by.html">Powered By</a></li> | 
|  | </ul> | 
|  | </span> | 
|  | <a class="main-nav-link" href="http://discuss.mxnet.io">Discuss</a> | 
|  | <span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">Versions(1.0.0)<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/>1.1.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/1.0.0/index.html>1.0.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></span></nav> | 
|  | <script> function getRootPath(){ return "../../" } </script> | 
|  | <div class="burgerIcon dropdown"> | 
|  | <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a> | 
|  | <ul class="dropdown-menu" id="burgerMenu"> | 
|  | <li><a href="../../install/index.html">Install</a></li> | 
|  | <li><a class="main-nav-link" href="../../tutorials/index.html">Tutorials</a></li> | 
|  | <li class="dropdown-submenu"> | 
|  | <a href="#" tabindex="-1">Community</a> | 
|  | <ul class="dropdown-menu"> | 
|  | <li><a href="../../community/index.html" tabindex="-1">Community</a></li> | 
|  | <li><a href="../../community/contribute.html" tabindex="-1">Contribute</a></li> | 
|  | <li><a href="../../community/powered_by.html" tabindex="-1">Powered By</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | <li class="dropdown-submenu"> | 
|  | <a href="#" tabindex="-1">API</a> | 
|  | <ul class="dropdown-menu"> | 
|  | <li><a href="../../api/python/index.html" tabindex="-1">Python</a> | 
|  | </li> | 
|  | <li><a href="../../api/scala/index.html" tabindex="-1">Scala</a> | 
|  | </li> | 
|  | <li><a href="../../api/r/index.html" tabindex="-1">R</a> | 
|  | </li> | 
|  | <li><a href="../../api/julia/index.html" tabindex="-1">Julia</a> | 
|  | </li> | 
|  | <li><a href="../../api/c++/index.html" tabindex="-1">C++</a> | 
|  | </li> | 
|  | <li><a href="../../api/perl/index.html" tabindex="-1">Perl</a> | 
|  | </li> | 
|  | </ul> | 
|  | </li> | 
|  | <li class="dropdown-submenu"> | 
|  | <a href="#" tabindex="-1">Docs</a> | 
|  | <ul class="dropdown-menu"> | 
|  | <li><a href="../../tutorials/index.html" tabindex="-1">Tutorials</a></li> | 
|  | <li><a href="../../faq/index.html" tabindex="-1">FAQ</a></li> | 
|  | <li><a href="../../architecture/index.html" tabindex="-1">Architecture</a></li> | 
|  | <li><a href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example" tabindex="-1">Examples</a></li> | 
|  | <li><a href="../../model_zoo/index.html" tabindex="-1">Model Zoo</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | <li><a href="../../architecture/index.html">Architecture</a></li> | 
|  | <li><a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a></li> | 
|  | <li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">Versions(1.0.0)</a><ul class="dropdown-menu"><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/>1.1.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/1.0.0/index.html>1.0.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></li></ul> | 
|  | </div> | 
|  | <div class="plusIcon dropdown"> | 
|  | <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a> | 
|  | <ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul> | 
|  | </div> | 
|  | <div id="search-input-wrap"> | 
|  | <form action="../../search.html" autocomplete="off" class="" method="get" role="search"> | 
|  | <div class="form-group inner-addon left-addon"> | 
|  | <i class="glyphicon glyphicon-search"></i> | 
|  | <input class="form-control" name="q" placeholder="Search" type="text"/> | 
|  | </div> | 
|  | <input name="check_keywords" type="hidden" value="yes"/> | 
|  | <input name="area" type="hidden" value="default"> | 
|  | </input></form> | 
|  | <div id="search-preview"></div> | 
|  | </div> | 
|  | <div id="searchIcon"> | 
|  | <span aria-hidden="true" class="glyphicon glyphicon-search"></span> | 
|  | </div> | 
|  | <!-- <div id="lang-select-wrap"> --> | 
|  | <!--   <label id="lang-select-label"> --> | 
|  | <!--     <\!-- <i class="fa fa-globe"></i> -\-> --> | 
|  | <!--     <span></span> --> | 
|  | <!--   </label> --> | 
|  | <!--   <select id="lang-select"> --> | 
|  | <!--     <option value="en">Eng</option> --> | 
|  | <!--     <option value="zh">中文</option> --> | 
|  | <!--   </select> --> | 
|  | <!-- </div> --> | 
|  | <!--     <a id="mobile-nav-toggle"> | 
|  | <span class="mobile-nav-toggle-bar"></span> | 
|  | <span class="mobile-nav-toggle-bar"></span> | 
|  | <span class="mobile-nav-toggle-bar"></span> | 
|  | </a> --> | 
|  | </div> | 
|  | </div> | 
|  | </div> | 
|  | <script type="text/javascript"> | 
|  | $('body').css('background', 'white'); | 
|  | </script> | 
|  | <div class="container"> | 
|  | <div class="row"> | 
|  | <div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation"> | 
|  | <div class="sphinxsidebarwrapper"> | 
|  | <ul> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../api/python/index.html">Python Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../api/r/index.html">R Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../api/julia/index.html">Julia Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../api/c++/index.html">C++ Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../api/scala/index.html">Scala Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../api/perl/index.html">Perl Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../faq/index.html">HowTo Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../architecture/index.html">System Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../index.html">Tutorials</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../community/index.html">Community</a></li> | 
|  | </ul> | 
|  | </div> | 
|  | </div> | 
|  | <div class="content"> | 
|  | <div class="page-tracker"></div> | 
|  | <div class="section" id="basics"> | 
|  | <span id="basics"></span><h1>Basics<a class="headerlink" href="#basics" title="Permalink to this headline">¶</a></h1> | 
|  | <p>This tutorial provides basic usages of the C++ package through the classical handwritten digits | 
|  | identification database–<a class="reference external" href="http://yann.lecun.com/exdb/mnist/">MNIST</a>.</p> | 
|  | <p>The following contents assume that the working directory is <code class="docutils literal"><span class="pre">/path/to/mxnet/cpp-package/example</span></code>.</p> | 
|  | <div class="section" id="load-data"> | 
|  | <span id="load-data"></span><h2>Load Data<a class="headerlink" href="#load-data" title="Permalink to this headline">¶</a></h2> | 
|  | <p>Before going into codes, we need to fetch MNIST data. You can either use the script <code class="docutils literal"><span class="pre">get_mnist.sh</span></code>, | 
|  | or download mnist data by yourself from Lecun’s <a class="reference external" href="http://yann.lecun.com/exdb/mnist/">website</a> | 
|  | and decompress them into <code class="docutils literal"><span class="pre">mnist_data</span></code> folder.</p> | 
|  | <p>Except linking the MXNet shared library, the C++ package itself is a header-only package, | 
|  | which means all you need to do is to include the header files. Among the header files, | 
|  | <code class="docutils literal"><span class="pre">op.h</span></code> is special since it is generated dynamically. The generation should be done when | 
|  | <a class="reference external" href="https://mxnet.incubator.apache.org/get_started/build_from_source.html#build-the-c++-package">building the C++ package</a>. | 
|  | After that, you also need to copy the shared library (<code class="docutils literal"><span class="pre">libmxnet.so</span></code> in linux, | 
|  | <code class="docutils literal"><span class="pre">libmxnet.dll</span></code> in windows) from <code class="docutils literal"><span class="pre">/path/to/mxnet/lib</span></code> to the working directory. | 
|  | We do not recommend you to use pre-built binaries because MXNet is under heavy development, | 
|  | the operator definitions in <code class="docutils literal"><span class="pre">op.h</span></code> may be incompatible with the pre-built version.</p> | 
|  | <p>In order to use functionalities provides by the C++ package, first we include the general | 
|  | header file <code class="docutils literal"><span class="pre">MxNetCpp.h</span></code> and specify the namespaces.</p> | 
|  | <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="cp">#include</span> <span class="cpf">"mxnet-cpp/MxNetCpp.h"</span><span class="cp"></span> | 
|  |  | 
|  | <span class="k">using</span> <span class="k">namespace</span> <span class="n">std</span><span class="p">;</span> | 
|  | <span class="k">using</span> <span class="k">namespace</span> <span class="n">mxnet</span><span class="o">::</span><span class="n">cpp</span><span class="p">;</span> | 
|  | </pre></div> | 
|  | </div> | 
|  | <p>Next we can use the data iter to load MNIST data (separated to training sets and validation sets). | 
|  | The digits in MNIST are 2-dimension arrays, so we should set <code class="docutils literal"><span class="pre">flat</span></code> to true to flatten the data.</p> | 
|  | <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">auto</span> <span class="n">train_iter</span> <span class="o">=</span> <span class="n">MXDataIter</span><span class="p">(</span><span class="s">"MNISTIter"</span><span class="p">)</span> | 
|  | <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"image"</span><span class="p">,</span> <span class="s">"./mnist_data/train-images-idx3-ubyte"</span><span class="p">)</span> | 
|  | <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"label"</span><span class="p">,</span> <span class="s">"./mnist_data/train-labels-idx1-ubyte"</span><span class="p">)</span> | 
|  | <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"batch_size"</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)</span> | 
|  | <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"flat"</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> | 
|  | <span class="p">.</span><span class="n">CreateDataIter</span><span class="p">();</span> | 
|  | <span class="k">auto</span> <span class="n">val_iter</span> <span class="o">=</span> <span class="n">MXDataIter</span><span class="p">(</span><span class="s">"MNISTIter"</span><span class="p">)</span> | 
|  | <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"image"</span><span class="p">,</span> <span class="s">"./mnist_data/t10k-images-idx3-ubyte"</span><span class="p">)</span> | 
|  | <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"label"</span><span class="p">,</span> <span class="s">"./mnist_data/t10k-labels-idx1-ubyte"</span><span class="p">)</span> | 
|  | <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"batch_size"</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)</span> | 
|  | <span class="p">.</span><span class="n">SetParam</span><span class="p">(</span><span class="s">"flat"</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> | 
|  | <span class="p">.</span><span class="n">CreateDataIter</span><span class="p">();</span> | 
|  | </pre></div> | 
|  | </div> | 
|  | <p>The data have been successfully loaded, we can now easily construct various models to identify | 
|  | the digits with the help of C++ package.</p> | 
|  | </div> | 
|  | <div class="section" id="multilayer-perceptron"> | 
|  | <span id="multilayer-perceptron"></span><h2>Multilayer Perceptron<a class="headerlink" href="#multilayer-perceptron" title="Permalink to this headline">¶</a></h2> | 
|  | <p>If you are not familiar with multilayer perceptron, you can get some basic information | 
|  | <a class="reference external" href="https://mxnet.incubator.apache.org/tutorials/python/mnist.html#multilayer-perceptron">here</a>. We only focus on | 
|  | the implementation in this tutorial.</p> | 
|  | <p>Constructing multilayer perceptron model is straightforward, assume we store the hidden size | 
|  | for each layer in <code class="docutils literal"><span class="pre">layers</span></code>, and each layer uses | 
|  | <a class="reference external" href="https://en.wikipedia.org/wiki/Rectifier_(neural_networks)">ReLu</a> function as activation.</p> | 
|  | <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">Symbol</span> <span class="nf">mlp</span><span class="p">(</span><span class="k">const</span> <span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span> <span class="o">&</span><span class="n">layers</span><span class="p">)</span> <span class="p">{</span> | 
|  | <span class="k">auto</span> <span class="n">x</span> <span class="o">=</span> <span class="n">Symbol</span><span class="o">::</span><span class="n">Variable</span><span class="p">(</span><span class="s">"X"</span><span class="p">);</span> | 
|  | <span class="k">auto</span> <span class="n">label</span> <span class="o">=</span> <span class="n">Symbol</span><span class="o">::</span><span class="n">Variable</span><span class="p">(</span><span class="s">"label"</span><span class="p">);</span> | 
|  |  | 
|  | <span class="n">vector</span><span class="o"><</span><span class="n">Symbol</span><span class="o">></span> <span class="n">weights</span><span class="p">(</span><span class="n">layers</span><span class="p">.</span><span class="n">size</span><span class="p">());</span> | 
|  | <span class="n">vector</span><span class="o"><</span><span class="n">Symbol</span><span class="o">></span> <span class="n">biases</span><span class="p">(</span><span class="n">layers</span><span class="p">.</span><span class="n">size</span><span class="p">());</span> | 
|  | <span class="n">vector</span><span class="o"><</span><span class="n">Symbol</span><span class="o">></span> <span class="n">outputs</span><span class="p">(</span><span class="n">layers</span><span class="p">.</span><span class="n">size</span><span class="p">());</span> | 
|  |  | 
|  | <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">i</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span> <span class="n">i</span><span class="o"><</span><span class="n">layers</span><span class="p">.</span><span class="n">size</span><span class="p">();</span> <span class="o">++</span><span class="n">i</span><span class="p">)</span> <span class="p">{</span> | 
|  | <span class="n">weights</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">Symbol</span><span class="o">::</span><span class="n">Variable</span><span class="p">(</span><span class="s">"w"</span> <span class="o">+</span> <span class="n">to_string</span><span class="p">(</span><span class="n">i</span><span class="p">));</span> | 
|  | <span class="n">biases</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">Symbol</span><span class="o">::</span><span class="n">Variable</span><span class="p">(</span><span class="s">"b"</span> <span class="o">+</span> <span class="n">to_string</span><span class="p">(</span><span class="n">i</span><span class="p">));</span> | 
|  | <span class="n">Symbol</span> <span class="n">fc</span> <span class="o">=</span> <span class="n">FullyConnected</span><span class="p">(</span> | 
|  | <span class="n">i</span> <span class="o">==</span> <span class="mi">0</span><span class="o">?</span> <span class="nl">x</span> <span class="p">:</span> <span class="n">outputs</span><span class="p">[</span><span class="n">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> | 
|  | <span class="n">weights</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> | 
|  | <span class="n">biases</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> | 
|  | <span class="n">layers</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> | 
|  | <span class="p">);</span> | 
|  | <span class="n">outputs</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">i</span> <span class="o">==</span> <span class="n">layers</span><span class="p">.</span><span class="n">size</span><span class="p">()</span><span class="o">-</span><span class="mi">1</span> <span class="o">?</span> <span class="nl">fc</span> <span class="p">:</span> <span class="n">Activation</span><span class="p">(</span><span class="n">fc</span><span class="p">,</span> <span class="n">ActivationActType</span><span class="o">::</span><span class="n">relu</span><span class="p">);</span> | 
|  | <span class="p">}</span> | 
|  |  | 
|  | <span class="k">return</span> <span class="n">SoftmaxOutput</span><span class="p">(</span><span class="n">outputs</span><span class="p">.</span><span class="n">back</span><span class="p">(),</span> <span class="n">label</span><span class="p">);</span> | 
|  | <span class="p">}</span> | 
|  | </pre></div> | 
|  | </div> | 
|  | <p>The above function defines a multilayer perceptron model where hidden sizes are specified | 
|  | by <code class="docutils literal"><span class="pre">layers</span></code>.</p> | 
|  | <p>We now create and initialize the parameters after the model is constructed. MXNet can help | 
|  | you to infer shapes of most of the parameters. Basically only the shape of data and label | 
|  | is needed.</p> | 
|  | <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">std</span><span class="o">::</span><span class="n">map</span><span class="o"><</span><span class="n">string</span><span class="p">,</span> <span class="n">NDArray</span><span class="o">></span> <span class="n">args</span><span class="p">;</span> | 
|  | <span class="n">args</span><span class="p">[</span><span class="s">"X"</span><span class="p">]</span> <span class="o">=</span> <span class="n">NDArray</span><span class="p">(</span><span class="n">Shape</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">image_size</span><span class="o">*</span><span class="n">image_size</span><span class="p">),</span> <span class="n">ctx</span><span class="p">);</span> | 
|  | <span class="n">args</span><span class="p">[</span><span class="s">"label"</span><span class="p">]</span> <span class="o">=</span> <span class="n">NDArray</span><span class="p">(</span><span class="n">Shape</span><span class="p">(</span><span class="n">batch_size</span><span class="p">),</span> <span class="n">ctx</span><span class="p">);</span> | 
|  | <span class="c1">// Let MXNet infer shapes other parameters such as weights</span> | 
|  | <span class="n">net</span><span class="p">.</span><span class="n">InferArgsMap</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="o">&</span><span class="n">args</span><span class="p">,</span> <span class="n">args</span><span class="p">);</span> | 
|  |  | 
|  | <span class="c1">// Initialize all parameters with uniform distribution U(-0.01, 0.01)</span> | 
|  | <span class="k">auto</span> <span class="n">initializer</span> <span class="o">=</span> <span class="n">Uniform</span><span class="p">(</span><span class="mf">0.01</span><span class="p">);</span> | 
|  | <span class="k">for</span> <span class="p">(</span><span class="k">auto</span><span class="o">&</span> <span class="nl">arg</span> <span class="p">:</span> <span class="n">args</span><span class="p">)</span> <span class="p">{</span> | 
|  | <span class="c1">// arg.first is parameter name, and arg.second is the value</span> | 
|  | <span class="n">initializer</span><span class="p">(</span><span class="n">arg</span><span class="p">.</span><span class="n">first</span><span class="p">,</span> <span class="o">&</span><span class="n">arg</span><span class="p">.</span><span class="n">second</span><span class="p">);</span> | 
|  | <span class="p">}</span> | 
|  | </pre></div> | 
|  | </div> | 
|  | <p>The rest is to train the model with an optimizer.</p> | 
|  | <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="c1">// Create sgd optimizer</span> | 
|  | <span class="n">Optimizer</span><span class="o">*</span> <span class="n">opt</span> <span class="o">=</span> <span class="n">OptimizerRegistry</span><span class="o">::</span><span class="n">Find</span><span class="p">(</span><span class="s">"sgd"</span><span class="p">);</span> | 
|  | <span class="n">opt</span><span class="o">-></span><span class="n">SetParam</span><span class="p">(</span><span class="s">"rescale_grad"</span><span class="p">,</span> <span class="mf">1.0</span><span class="o">/</span><span class="n">batch_size</span><span class="p">);</span> | 
|  |  | 
|  | <span class="c1">// Start training</span> | 
|  | <span class="k">for</span> <span class="p">(</span><span class="kt">int</span> <span class="n">iter</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">iter</span> <span class="o"><</span> <span class="n">max_epoch</span><span class="p">;</span> <span class="o">++</span><span class="n">iter</span><span class="p">)</span> <span class="p">{</span> | 
|  | <span class="n">train_iter</span><span class="p">.</span><span class="n">Reset</span><span class="p">();</span> | 
|  |  | 
|  | <span class="k">while</span> <span class="p">(</span><span class="n">train_iter</span><span class="p">.</span><span class="n">Next</span><span class="p">())</span> <span class="p">{</span> | 
|  | <span class="k">auto</span> <span class="n">data_batch</span> <span class="o">=</span> <span class="n">train_iter</span><span class="p">.</span><span class="n">GetDataBatch</span><span class="p">();</span> | 
|  | <span class="c1">// Set data and label</span> | 
|  | <span class="n">args</span><span class="p">[</span><span class="s">"X"</span><span class="p">]</span> <span class="o">=</span> <span class="n">data_batch</span><span class="p">.</span><span class="n">data</span><span class="p">;</span> | 
|  | <span class="n">args</span><span class="p">[</span><span class="s">"label"</span><span class="p">]</span> <span class="o">=</span> <span class="n">data_batch</span><span class="p">.</span><span class="n">label</span><span class="p">;</span> | 
|  |  | 
|  | <span class="c1">// Create executor by binding parameters to the model</span> | 
|  | <span class="k">auto</span> <span class="o">*</span><span class="n">exec</span> <span class="o">=</span> <span class="n">net</span><span class="p">.</span><span class="n">SimpleBind</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">args</span><span class="p">);</span> | 
|  | <span class="c1">// Compute gradients</span> | 
|  | <span class="n">exec</span><span class="o">-></span><span class="n">Forward</span><span class="p">(</span><span class="nb">true</span><span class="p">);</span> | 
|  | <span class="n">exec</span><span class="o">-></span><span class="n">Backward</span><span class="p">();</span> | 
|  | <span class="c1">// Update parameters</span> | 
|  | <span class="n">exec</span><span class="o">-></span><span class="n">UpdateAll</span><span class="p">(</span><span class="n">opt</span><span class="p">,</span> <span class="n">learning_rate</span><span class="p">,</span> <span class="n">weight_decay</span><span class="p">);</span> | 
|  | <span class="c1">// Remember to free the memory</span> | 
|  | <span class="k">delete</span> <span class="n">exec</span><span class="p">;</span> | 
|  | <span class="p">}</span> | 
|  | <span class="p">}</span> | 
|  | </pre></div> | 
|  | </div> | 
|  | <p>We also want to see how our model performs. The C++ package provides convenient APIs for | 
|  | evaluating. Here we use accuracy as metric. The inference is almost the same as training, | 
|  | except that we don’t need gradients.</p> | 
|  | <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">Accuracy</span> <span class="n">acc</span><span class="p">;</span> | 
|  | <span class="n">val_iter</span><span class="p">.</span><span class="n">Reset</span><span class="p">();</span> | 
|  | <span class="k">while</span> <span class="p">(</span><span class="n">val_iter</span><span class="p">.</span><span class="n">Next</span><span class="p">())</span> <span class="p">{</span> | 
|  | <span class="k">auto</span> <span class="n">data_batch</span> <span class="o">=</span> <span class="n">val_iter</span><span class="p">.</span><span class="n">GetDataBatch</span><span class="p">();</span> | 
|  | <span class="n">args</span><span class="p">[</span><span class="s">"X"</span><span class="p">]</span> <span class="o">=</span> <span class="n">data_batch</span><span class="p">.</span><span class="n">data</span><span class="p">;</span> | 
|  | <span class="n">args</span><span class="p">[</span><span class="s">"label"</span><span class="p">]</span> <span class="o">=</span> <span class="n">data_batch</span><span class="p">.</span><span class="n">label</span><span class="p">;</span> | 
|  | <span class="k">auto</span> <span class="o">*</span><span class="n">exec</span> <span class="o">=</span> <span class="n">net</span><span class="p">.</span><span class="n">SimpleBind</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">args</span><span class="p">);</span> | 
|  | <span class="c1">// Forward pass is enough as no gradient is needed when evaluating</span> | 
|  | <span class="n">exec</span><span class="o">-></span><span class="n">Forward</span><span class="p">(</span><span class="nb">false</span><span class="p">);</span> | 
|  | <span class="n">acc</span><span class="p">.</span><span class="n">Update</span><span class="p">(</span><span class="n">data_batch</span><span class="p">.</span><span class="n">label</span><span class="p">,</span> <span class="n">exec</span><span class="o">-></span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]);</span> | 
|  | <span class="k">delete</span> <span class="n">exec</span><span class="p">;</span> | 
|  | <span class="p">}</span> | 
|  | </pre></div> | 
|  | </div> | 
|  | <p>You can find the complete code in <code class="docutils literal"><span class="pre">mlp_cpu.cpp</span></code>. Use <code class="docutils literal"><span class="pre">make</span> <span class="pre">mlp_cpu</span></code> to compile it, | 
|  | and <code class="docutils literal"><span class="pre">./mlp_cpu</span></code> to run it.</p> | 
|  | </div> | 
|  | <div class="section" id="gpu-support"> | 
|  | <span id="gpu-support"></span><h2>GPU Support<a class="headerlink" href="#gpu-support" title="Permalink to this headline">¶</a></h2> | 
|  | <p>It’s worth noting that changing context from <code class="docutils literal"><span class="pre">Context::cpu()</span></code> to <code class="docutils literal"><span class="pre">Context::gpu()</span></code> is not enough, | 
|  | because the data read by data iter are stored in memory, we cannot assign it directly to the | 
|  | parameters. To bridge this gap, NDArray provides data synchronization functionalities between | 
|  | GPU and CPU. We will illustrate it by making the mlp code run on GPU.</p> | 
|  | <p>In the previous code, data are used like</p> | 
|  | <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">args</span><span class="p">[</span><span class="s">"X"</span><span class="p">]</span> <span class="o">=</span> <span class="n">data_batch</span><span class="p">.</span><span class="n">data</span><span class="p">;</span> | 
|  | <span class="n">args</span><span class="p">[</span><span class="s">"label"</span><span class="p">]</span> <span class="o">=</span> <span class="n">data_batch</span><span class="p">.</span><span class="n">label</span><span class="p">;</span> | 
|  | </pre></div> | 
|  | </div> | 
|  | <p>It will be problematic if other parameters are created in the context of GPU. We can use | 
|  | <code class="docutils literal"><span class="pre">NDArray::CopyTo</span></code> to solve this problem.</p> | 
|  | <div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="c1">// Data provided by DataIter are stored in memory, should be copied to GPU first.</span> | 
|  | <span class="n">data_batch</span><span class="p">.</span><span class="n">data</span><span class="p">.</span><span class="n">CopyTo</span><span class="p">(</span><span class="o">&</span><span class="n">args</span><span class="p">[</span><span class="s">"X"</span><span class="p">]);</span> | 
|  | <span class="n">data_batch</span><span class="p">.</span><span class="n">label</span><span class="p">.</span><span class="n">CopyTo</span><span class="p">(</span><span class="o">&</span><span class="n">args</span><span class="p">[</span><span class="s">"label"</span><span class="p">]);</span> | 
|  | <span class="c1">// CopyTo is imperative, need to wait for it to complete.</span> | 
|  | <span class="n">NDArray</span><span class="o">::</span><span class="n">WaitAll</span><span class="p">();</span> | 
|  | </pre></div> | 
|  | </div> | 
|  | <p>By replacing the former code to the latter one, we successfully port the code to GPU. You can find the complete code in <code class="docutils literal"><span class="pre">mlp_gpu.cpp</span></code>. Compilation is similar to the cpu version. (Note: The shared library should be built with GPU support on)</p> | 
|  | </div> | 
|  | </div> | 
|  | </div> | 
|  | </div> | 
|  | <div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation"> | 
|  | <div class="sphinxsidebarwrapper"> | 
|  | <h3><a href="../../index.html">Table Of Contents</a></h3> | 
|  | <ul> | 
|  | <li><a class="reference internal" href="#">Basics</a><ul> | 
|  | <li><a class="reference internal" href="#load-data">Load Data</a></li> | 
|  | <li><a class="reference internal" href="#multilayer-perceptron">Multilayer Perceptron</a></li> | 
|  | <li><a class="reference internal" href="#gpu-support">GPU Support</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | </ul> | 
|  | </div> | 
|  | </div> | 
|  | </div><div class="footer"> | 
|  | <div class="section-disclaimer"> | 
|  | <div class="container"> | 
|  | <div> | 
|  | <img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/> | 
|  | <p> | 
|  | Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF. | 
|  | </p> | 
|  | <p> | 
|  | "Copyright © 2017, The Apache Software Foundation | 
|  | Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation." | 
|  | </p> | 
|  | </div> | 
|  | </div> | 
|  | </div> | 
|  | </div> <!-- pagename != index --> | 
|  | </div> | 
|  | <script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> | 
|  | <script src="../../_static/js/sidebar.js" type="text/javascript"></script> | 
|  | <script src="../../_static/js/search.js" type="text/javascript"></script> | 
|  | <script src="../../_static/js/navbar.js" type="text/javascript"></script> | 
|  | <script src="../../_static/js/clipboard.min.js" type="text/javascript"></script> | 
|  | <script src="../../_static/js/copycode.js" type="text/javascript"></script> | 
|  | <script src="../../_static/js/page.js" type="text/javascript"></script> | 
|  | <script type="text/javascript"> | 
|  | $('body').ready(function () { | 
|  | $('body').css('visibility', 'visible'); | 
|  | }); | 
|  | </script> | 
|  | </body> | 
|  | </html> |