| <!DOCTYPE html> |
| |
| <html lang="en"> |
| <head> |
| <meta charset="utf-8"/> |
| <meta content="IE=edge" http-equiv="X-UA-Compatible"/> |
| <meta content="width=device-width, initial-scale=1" name="viewport"/> |
| <title>Survey of Existing Interfaces and Implementations — mxnet documentation</title> |
| <link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/> |
| <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/> |
| <link href="../_static/basic.css" rel="stylesheet" type="text/css"/> |
| <link href="../_static/pygments.css" rel="stylesheet" type="text/css"/> |
| <link href="../_static/mxnet.css" rel="stylesheet" type="text/css"> |
| <script type="text/javascript"> |
| var DOCUMENTATION_OPTIONS = { |
| URL_ROOT: '../', |
| VERSION: '', |
| COLLAPSE_INDEX: false, |
| FILE_SUFFIX: '.html', |
| HAS_SOURCE: true, |
| SOURCELINK_SUFFIX: '' |
| }; |
| </script> |
| <script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script> |
| <script src="../_static/underscore.js" type="text/javascript"></script> |
| <script src="../_static/searchtools_custom.js" type="text/javascript"></script> |
| <script src="../_static/doctools.js" type="text/javascript"></script> |
| <script src="../_static/selectlang.js" type="text/javascript"></script> |
| <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> |
| <script type="text/javascript"> jQuery(function() { Search.loadIndex("/searchindex.js"); Search.init();}); </script> |
| <script> |
| (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ |
| (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new |
| Date();a=s.createElement(o), |
| m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) |
| })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); |
| |
| ga('create', 'UA-96378503-1', 'auto'); |
| ga('send', 'pageview'); |
| |
| </script> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../_static/jquery.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../_static/underscore.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="../_static/doctools.js"></script> --> |
| <!-- --> |
| <!-- <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> --> |
| <!-- --> |
| <link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"> |
| </link></link></head> |
| <body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document"> |
| <div class="content-block"><div class="navbar navbar-fixed-top"> |
| <div class="container" id="navContainer"> |
| <div class="innder" id="header-inner"> |
| <h1 id="logo-wrap"> |
| <a href="../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a> |
| </h1> |
| <nav class="nav-bar" id="main-nav"> |
| <a class="main-nav-link" href="../install/index.html">Install</a> |
| <a class="main-nav-link" href="../tutorials/index.html">Tutorials</a> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="../gluon/index.html">About</a></li> |
| <li><a class="main-nav-link" href="http://gluon.mxnet.io">Tutorials</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> |
| <li><a class="main-nav-link" href="../api/python/index.html">Python</a></li> |
| <li><a class="main-nav-link" href="../api/scala/index.html">Scala</a></li> |
| <li><a class="main-nav-link" href="../api/r/index.html">R</a></li> |
| <li><a class="main-nav-link" href="../api/julia/index.html">Julia</a></li> |
| <li><a class="main-nav-link" href="../api/c++/index.html">C++</a></li> |
| <li><a class="main-nav-link" href="../api/perl/index.html">Perl</a></li> |
| </ul> |
| </span> |
| <span id="dropdown-menu-position-anchor-docs"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs"> |
| <li><a class="main-nav-link" href="../faq/index.html">FAQ</a></li> |
| <li><a class="main-nav-link" href="../architecture/index.html">Architecture</a></li> |
| <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example">Examples</a></li> |
| <li><a class="main-nav-link" href="../model_zoo/index.html">Model Zoo</a></li> |
| </ul> |
| </span> |
| <a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a> |
| <span id="dropdown-menu-position-anchor-community"> |
| <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a> |
| <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community"> |
| <li><a class="main-nav-link" href="../community/index.html">Community</a></li> |
| <li><a class="main-nav-link" href="../community/contribute.html">Contribute</a></li> |
| <li><a class="main-nav-link" href="../community/powered_by.html">Powered By</a></li> |
| </ul> |
| </span> |
| <a class="main-nav-link" href="http://discuss.mxnet.io">Discuss</a> |
| <span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">Versions(1.0.0)<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/>1.1.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/1.0.0/index.html>1.0.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></span></nav> |
| <script> function getRootPath(){ return "../" } </script> |
| <div class="burgerIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a> |
| <ul class="dropdown-menu" id="burgerMenu"> |
| <li><a href="../install/index.html">Install</a></li> |
| <li><a class="main-nav-link" href="../tutorials/index.html">Tutorials</a></li> |
| <li class="dropdown-submenu"> |
| <a href="#" tabindex="-1">Community</a> |
| <ul class="dropdown-menu"> |
| <li><a href="../community/index.html" tabindex="-1">Community</a></li> |
| <li><a href="../community/contribute.html" tabindex="-1">Contribute</a></li> |
| <li><a href="../community/powered_by.html" tabindex="-1">Powered By</a></li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu"> |
| <a href="#" tabindex="-1">API</a> |
| <ul class="dropdown-menu"> |
| <li><a href="../api/python/index.html" tabindex="-1">Python</a> |
| </li> |
| <li><a href="../api/scala/index.html" tabindex="-1">Scala</a> |
| </li> |
| <li><a href="../api/r/index.html" tabindex="-1">R</a> |
| </li> |
| <li><a href="../api/julia/index.html" tabindex="-1">Julia</a> |
| </li> |
| <li><a href="../api/c++/index.html" tabindex="-1">C++</a> |
| </li> |
| <li><a href="../api/perl/index.html" tabindex="-1">Perl</a> |
| </li> |
| </ul> |
| </li> |
| <li class="dropdown-submenu"> |
| <a href="#" tabindex="-1">Docs</a> |
| <ul class="dropdown-menu"> |
| <li><a href="../tutorials/index.html" tabindex="-1">Tutorials</a></li> |
| <li><a href="../faq/index.html" tabindex="-1">FAQ</a></li> |
| <li><a href="../architecture/index.html" tabindex="-1">Architecture</a></li> |
| <li><a href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example" tabindex="-1">Examples</a></li> |
| <li><a href="../model_zoo/index.html" tabindex="-1">Model Zoo</a></li> |
| </ul> |
| </li> |
| <li><a href="../architecture/index.html">Architecture</a></li> |
| <li><a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a></li> |
| <li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">Versions(1.0.0)</a><ul class="dropdown-menu"><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/>1.1.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/1.0.0/index.html>1.0.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></li></ul> |
| </div> |
| <div class="plusIcon dropdown"> |
| <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a> |
| <ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul> |
| </div> |
| <div id="search-input-wrap"> |
| <form action="../search.html" autocomplete="off" class="" method="get" role="search"> |
| <div class="form-group inner-addon left-addon"> |
| <i class="glyphicon glyphicon-search"></i> |
| <input class="form-control" name="q" placeholder="Search" type="text"/> |
| </div> |
| <input name="check_keywords" type="hidden" value="yes"/> |
| <input name="area" type="hidden" value="default"> |
| </input></form> |
| <div id="search-preview"></div> |
| </div> |
| <div id="searchIcon"> |
| <span aria-hidden="true" class="glyphicon glyphicon-search"></span> |
| </div> |
| <!-- <div id="lang-select-wrap"> --> |
| <!-- <label id="lang-select-label"> --> |
| <!-- <\!-- <i class="fa fa-globe"></i> -\-> --> |
| <!-- <span></span> --> |
| <!-- </label> --> |
| <!-- <select id="lang-select"> --> |
| <!-- <option value="en">Eng</option> --> |
| <!-- <option value="zh">中文</option> --> |
| <!-- </select> --> |
| <!-- </div> --> |
| <!-- <a id="mobile-nav-toggle"> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| <span class="mobile-nav-toggle-bar"></span> |
| </a> --> |
| </div> |
| </div> |
| </div> |
| <script type="text/javascript"> |
| $('body').css('background', 'white'); |
| </script> |
| <div class="container"> |
| <div class="row"> |
| <div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <ul> |
| <li class="toctree-l1"><a class="reference internal" href="../api/python/index.html">Python Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../api/r/index.html">R Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../api/julia/index.html">Julia Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../api/c++/index.html">C++ Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../api/scala/index.html">Scala Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../api/perl/index.html">Perl Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../faq/index.html">HowTo Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="index.html">System Documents</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../tutorials/index.html">Tutorials</a></li> |
| <li class="toctree-l1"><a class="reference internal" href="../community/index.html">Community</a></li> |
| </ul> |
| </div> |
| </div> |
| <div class="content"> |
| <div class="page-tracker"></div> |
| <div class="section" id="survey-of-existing-interfaces-and-implementations"> |
| <span id="survey-of-existing-interfaces-and-implementations"></span><h1>Survey of Existing Interfaces and Implementations<a class="headerlink" href="#survey-of-existing-interfaces-and-implementations" title="Permalink to this headline">¶</a></h1> |
| <p>Commonly used deep learning libraries with good RNN/LSTM support include <a class="reference external" href="http://deeplearning.net/software/theano/library/scan.html">Theano</a> and its wrappers <a class="reference external" href="http://lasagne.readthedocs.org/en/latest/modules/layers/recurrent.html">Lasagne</a> and <a class="reference external" href="http://keras.io/layers/recurrent/">Keras</a>; <a class="reference external" href="https://cntk.codeplex.com/">CNTK</a>; <a class="reference external" href="https://www.tensorflow.org/versions/master/tutorials/recurrent/index.html">TensorFlow</a>; and various implementations in Torch, such as <a class="reference external" href="https://github.com/karpathy/char-rnn">this well-known character-level language model tutorial</a>, <a class="reference external" href="https://github.com/Element-Research/rnn">this</a>.</p> |
| <p>In this document, we present a comparative analysis of the approaches taken by these libraries.</p> |
| <div class="section" id="theano"> |
| <span id="theano"></span><h2>Theano<a class="headerlink" href="#theano" title="Permalink to this headline">¶</a></h2> |
| <p>In Theano, RNN support comes via its <a class="reference external" href="http://deeplearning.net/software/theano/library/scan.html">scan operator</a>, |
| which allows construction of a loop where the number of iterations is specified |
| as a runtime value of a symbolic variable. |
| You can find an official example of an LSTM implementation with scan |
| <a class="reference external" href="http://deeplearning.net/tutorial/lstm.html">here</a>.</p> |
| <div class="section" id="implementation"> |
| <span id="implementation"></span><h3>Implementation<a class="headerlink" href="#implementation" title="Permalink to this headline">¶</a></h3> |
| <p>I’m not very familiar with the Theano internals, |
| but it seems from <a class="reference external" href="https://github.com/Theano/Theano/blob/master/theano/scan_module/scan_op.py#L1225">theano/scan_module/scan_op.py#execute</a> |
| that the scan operator is implemented with a loop in Python |
| that performs one iteration at a time:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span> <span class="n">fn</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fn</span><span class="o">.</span><span class="n">fn</span> |
| |
| <span class="k">while</span> <span class="p">(</span><span class="n">i</span> <span class="o"><</span> <span class="n">n_steps</span><span class="p">)</span> <span class="ow">and</span> <span class="n">cond</span><span class="p">:</span> |
| <span class="c1"># ...</span> |
| <span class="n">fn</span><span class="p">()</span> |
| </pre></div> |
| </div> |
| <p>The <code class="docutils literal"><span class="pre">grad</span></code> function in Theano constructs a symbolic graph for computing gradients. So the <code class="docutils literal"><span class="pre">grad</span></code> for the scan operator is actually implemented by <a class="reference external" href="https://github.com/Theano/Theano/blob/master/theano/scan_module/scan_op.py#L2527">constructing another scan operator</a>:</p> |
| <div class="highlight-python"><div class="highlight"><pre><span></span> <span class="n">local_op</span> <span class="o">=</span> <span class="n">Scan</span><span class="p">(</span><span class="n">inner_gfn_ins</span><span class="p">,</span> <span class="n">inner_gfn_outs</span><span class="p">,</span> <span class="n">info</span><span class="p">)</span> |
| <span class="n">outputs</span> <span class="o">=</span> <span class="n">local_op</span><span class="p">(</span><span class="o">*</span><span class="n">outer_inputs</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| <p>The <a class="reference external" href="http://deeplearning.net/software/theano/library/scan.html#optimizing-scan-s-performance">performance guide</a> for Theano’s scan operator suggests minimizing the usage of the scan. This might be due to the fact that the loop is executed in Python, which might be a bit slow (due to context switching and the performance of Python itself). Moreover, because no unrolling is performed, the graph optimizer can’t see the big picture.</p> |
| <p>If I understand correctly, when multiple RNN/LSTM layers are stacked, instead of a single loop with each iteration computing the whole feedforward network operation, the computation sequentially does a separate loop for each layer that uses the scan operator. If all of the intermediate values are stored to support computing the gradients, this is fine. Otherwise, using a single loop could be more memory efficient.</p> |
| </div> |
| <div class="section" id="lasagne"> |
| <span id="lasagne"></span><h3>Lasagne<a class="headerlink" href="#lasagne" title="Permalink to this headline">¶</a></h3> |
| <p>The documentation for RNN in Lasagne can be found <a class="reference external" href="http://lasagne.readthedocs.org/en/latest/modules/layers/recurrent.html">here</a>. In Lasagne, a recurrent layer is just like a standard layer, except that the input shape is expected to be <code class="docutils literal"><span class="pre">(batch_size,</span> <span class="pre">sequence_length,</span> <span class="pre">feature_dimension)</span></code>. The output shape is then <code class="docutils literal"><span class="pre">(batch_size,</span> <span class="pre">sequence_length,</span> <span class="pre">output_dimension)</span></code>.</p> |
| <p>Both <code class="docutils literal"><span class="pre">batch_size</span></code> and <code class="docutils literal"><span class="pre">sequence_length</span></code> are specified as <code class="docutils literal"><span class="pre">None</span></code>, and inferred from the data. Alternatively, when memory is sufficient and the (maximum) sequence length is known beforehand, you can set <code class="docutils literal"><span class="pre">unroll_scan</span></code> to <code class="docutils literal"><span class="pre">False</span></code>. Then Lasagne will unroll the graph explicitly, instead of using the Theano <code class="docutils literal"><span class="pre">scan</span></code> operator. Explicitly unrolling is implemented in <a class="reference external" href="https://github.com/Lasagne/Lasagne/blob/master/lasagne/utils.py#L340">utils.py#unroll_scan</a>.</p> |
| <p>The recurrent layer also accepts a <code class="docutils literal"><span class="pre">mask_input</span></code>, to support variable length sequences (e.g., when sequences within a mini-batch have different lengths. The mask has the shape <code class="docutils literal"><span class="pre">(batch_size,</span> <span class="pre">sequence_length)</span></code>.</p> |
| </div> |
| <div class="section" id="keras"> |
| <span id="keras"></span><h3>Keras<a class="headerlink" href="#keras" title="Permalink to this headline">¶</a></h3> |
| <p>The documentation for RNN in Keras can be found <a class="reference external" href="http://keras.io/layers/recurrent/">here</a>. The interface in Keras is similar to the interface in Lasagne. The input is expected to be of shape <code class="docutils literal"><span class="pre">(batch_size,</span> <span class="pre">sequence_length,</span> <span class="pre">feature_dimension)</span></code>, and the output shape (if <code class="docutils literal"><span class="pre">return_sequences</span></code> is <code class="docutils literal"><span class="pre">True</span></code>) is <code class="docutils literal"><span class="pre">(batch_size,</span> <span class="pre">sequence_length,</span> <span class="pre">feature_dimension)</span></code>.</p> |
| <p>Keras currently supports both a Theano and a TensorFlow back end. RNN for the Theano back end is <a class="reference external" href="https://github.com/fchollet/keras/blob/master/keras/backend/theano_backend.py#L432">implemented with the scan operator</a>. For TensorFlow, it seems to be <a class="reference external" href="https://github.com/fchollet/keras/blob/master/keras/backend/tensorflow_backend.py#L396">implemented via explicitly unrolling</a>. The documentation says that for the TensorFlow back end, the sequence length must be specified beforehand, and masking is currently not working (because <code class="docutils literal"><span class="pre">tf.reduce_any</span></code> is not functioning yet).</p> |
| </div> |
| </div> |
| <div class="section" id="torch"> |
| <span id="torch"></span><h2>Torch<a class="headerlink" href="#torch" title="Permalink to this headline">¶</a></h2> |
| <p><a class="reference external" href="https://github.com/karpathy/char-rnn">karpathy/char-rnn</a> is implemented by <a class="reference external" href="https://github.com/karpathy/char-rnn/blob/master/model/RNN.lua#L15">explicitly unrolling</a>. On the contrary, <a class="reference external" href="https://github.com/Element-Research/rnn">Element-Research/rnn</a> runs sequence iteration in Lua. It actually has a very modular design:</p> |
| <ul class="simple"> |
| <li>The basic RNN/LSTM modules run only <em>one</em> time step per one call of <code class="docutils literal"><span class="pre">forward</span></code> (and accumulate/store necessary information to support backward computation, if needed). You could have detailed control when using this API directly.</li> |
| <li>A collection of <code class="docutils literal"><span class="pre">Sequencer</span></code>s are defined to model common scenarios, like forwarding sequence, bi-directional sequence, attention models, etc.</li> |
| <li>There are other utility modules, like masking to support variable length sequences, etc.</li> |
| </ul> |
| </div> |
| <div class="section" id="cntk"> |
| <span id="cntk"></span><h2>CNTK<a class="headerlink" href="#cntk" title="Permalink to this headline">¶</a></h2> |
| <p>CNTK looks quite different from other common deep learning libraries. I don’t understand it very well. I will talk with Yu to get more details.</p> |
| <p>It seems that the basic data types are matrices (although there is also a <code class="docutils literal"><span class="pre">TensorView</span></code> utility class). The mini-batch data for sequence data is packed in a matrix with N-row being <code class="docutils literal"><span class="pre">feature_dimension</span></code> and N-column being <code class="docutils literal"><span class="pre">sequence_length</span> <span class="pre">*</span> <span class="pre">batch_size</span></code> (see Figure 2.9 on page 50 of the <a class="reference external" href="http://research.microsoft.com/pubs/226641/CNTKBook-20151201.pdf">CNTKBook</a>).</p> |
| <p>Recurrent networks are first-class citizens in CNTK. In section 5.2.1.8 of the CNTKBook, you can see an example of a customized computation node. The node needs to explicitly define the functions for standard forward and forward with a time index, which is used for RNN evaluation:</p> |
| <div class="highlight-cpp"><div class="highlight"><pre><span></span> <span class="k">virtual</span> <span class="kt">void</span> <span class="nf">EvaluateThisNode</span><span class="p">()</span> |
| <span class="p">{</span> |
| <span class="n">EvaluateThisNodeS</span><span class="p">(</span><span class="n">FunctionValues</span><span class="p">(),</span> <span class="n">Inputs</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">-></span> |
| <span class="n">FunctionValues</span><span class="p">(),</span> <span class="n">Inputs</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">-></span><span class="n">FunctionValues</span><span class="p">());</span> |
| <span class="p">}</span> |
| <span class="k">virtual</span> <span class="kt">void</span> <span class="nf">EvaluateThisNode</span><span class="p">(</span><span class="k">const</span> <span class="kt">size_t</span> <span class="n">timeIdxInSeq</span><span class="p">)</span> |
| <span class="p">{</span> |
| <span class="n">Matrix</span><span class="o"><</span><span class="n">ElemType</span><span class="o">></span> <span class="n">sliceInputValue</span> <span class="o">=</span> <span class="n">Inputs</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">-></span> |
| <span class="n">FunctionValues</span><span class="p">().</span><span class="n">ColumnSlice</span><span class="p">(</span><span class="n">timeIdxInSeq</span> <span class="o">*</span> |
| <span class="n">m_samplesInRecurrentStep</span><span class="p">,</span> <span class="n">m_samplesInRecurrentStep</span><span class="p">);</span> |
| <span class="n">Matrix</span><span class="o"><</span><span class="n">ElemType</span><span class="o">></span> <span class="n">sliceOutputValue</span> <span class="o">=</span> <span class="n">m_functionValues</span><span class="p">.</span> |
| <span class="n">ColumnSlice</span><span class="p">(</span><span class="n">timeIdxInSeq</span> <span class="o">*</span> <span class="n">m_samplesInRecurrentStep</span><span class="p">,</span> |
| <span class="n">m_samplesInRecurrentStep</span><span class="p">);</span> |
| <span class="n">EvaluateThisNodeS</span><span class="p">(</span><span class="n">sliceOutputValue</span><span class="p">,</span> <span class="n">Inputs</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">-></span> |
| <span class="n">FunctionValues</span><span class="p">(),</span> <span class="n">sliceInput1Value</span><span class="p">);</span> |
| <span class="p">}</span> |
| </pre></div> |
| </div> |
| <p>The function <code class="docutils literal"><span class="pre">ColumnSlice(start_col,</span> <span class="pre">num_col)</span></code> takes out the packed data for that time index, as described above (here <code class="docutils literal"><span class="pre">m_samplesInRecurrentStep</span></code> must be the mini-batch size).</p> |
| <p>The low-level API for recurrent connection seem to be a <em>delay node</em>. But I’m not sure how to use this low-level API. The <a class="reference external" href="https://cntk.codeplex.com/SourceControl/latest#Examples/Text/PennTreebank/Config/rnn.config">example of PTB language model</a> uses a very high-level API (simply setting <code class="docutils literal"><span class="pre">recurrentLayer</span> <span class="pre">=</span> <span class="pre">1</span></code> in the config).</p> |
| </div> |
| <div class="section" id="tensorflow"> |
| <span id="tensorflow"></span><h2>TensorFlow<a class="headerlink" href="#tensorflow" title="Permalink to this headline">¶</a></h2> |
| <p>The <a class="reference external" href="https://www.tensorflow.org/versions/master/tutorials/recurrent/index.html#recurrent-neural-networks">current example of RNNLM</a> in TensorFlow uses explicit unrolling for a predefined number of time steps. The white-paper mentions that an advanced control flow API (Theano’s scan-like) is planned.</p> |
| </div> |
| <div class="section" id="next-steps"> |
| <span id="next-steps"></span><h2>Next Steps<a class="headerlink" href="#next-steps" title="Permalink to this headline">¶</a></h2> |
| <div class="toctree-wrapper compound"> |
| <ul> |
| <li class="toctree-l1"><a class="reference external" href="https://mxnet.incubator.apache.org/architecture/overview.html">MXNet System Overview</a></li> |
| </ul> |
| </div> |
| </div> |
| </div> |
| </div> |
| </div> |
| <div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation"> |
| <div class="sphinxsidebarwrapper"> |
| <h3><a href="../index.html">Table Of Contents</a></h3> |
| <ul> |
| <li><a class="reference internal" href="#">Survey of Existing Interfaces and Implementations</a><ul> |
| <li><a class="reference internal" href="#theano">Theano</a><ul> |
| <li><a class="reference internal" href="#implementation">Implementation</a></li> |
| <li><a class="reference internal" href="#lasagne">Lasagne</a></li> |
| <li><a class="reference internal" href="#keras">Keras</a></li> |
| </ul> |
| </li> |
| <li><a class="reference internal" href="#torch">Torch</a></li> |
| <li><a class="reference internal" href="#cntk">CNTK</a></li> |
| <li><a class="reference internal" href="#tensorflow">TensorFlow</a></li> |
| <li><a class="reference internal" href="#next-steps">Next Steps</a></li> |
| </ul> |
| </li> |
| </ul> |
| </div> |
| </div> |
| </div><div class="footer"> |
| <div class="section-disclaimer"> |
| <div class="container"> |
| <div> |
| <img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/> |
| <p> |
| Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF. |
| </p> |
| <p> |
| "Copyright © 2017, The Apache Software Foundation |
| Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation." |
| </p> |
| </div> |
| </div> |
| </div> |
| </div> <!-- pagename != index --> |
| </div> |
| <script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> |
| <script src="../_static/js/sidebar.js" type="text/javascript"></script> |
| <script src="../_static/js/search.js" type="text/javascript"></script> |
| <script src="../_static/js/navbar.js" type="text/javascript"></script> |
| <script src="../_static/js/clipboard.min.js" type="text/javascript"></script> |
| <script src="../_static/js/copycode.js" type="text/javascript"></script> |
| <script src="../_static/js/page.js" type="text/javascript"></script> |
| <script type="text/javascript"> |
| $('body').ready(function () { |
| $('body').css('visibility', 'visible'); |
| }); |
| </script> |
| </body> |
| </html> |