|  | <!DOCTYPE html> | 
|  |  | 
|  | <html lang="en"> | 
|  | <head> | 
|  | <meta charset="utf-8"/> | 
|  | <meta content="IE=edge" http-equiv="X-UA-Compatible"/> | 
|  | <meta content="width=device-width, initial-scale=1" name="viewport"/> | 
|  | <title>Random Distribution Generator NDArray API — mxnet  documentation</title> | 
|  | <link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/> | 
|  | <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/> | 
|  | <link href="../../../_static/basic.css" rel="stylesheet" type="text/css"/> | 
|  | <link href="../../../_static/pygments.css" rel="stylesheet" type="text/css"/> | 
|  | <link href="../../../_static/mxnet.css" rel="stylesheet" type="text/css"> | 
|  | <script type="text/javascript"> | 
|  | var DOCUMENTATION_OPTIONS = { | 
|  | URL_ROOT:    '../../../', | 
|  | VERSION:     '', | 
|  | COLLAPSE_INDEX: false, | 
|  | FILE_SUFFIX: '.html', | 
|  | HAS_SOURCE:  true, | 
|  | SOURCELINK_SUFFIX: '' | 
|  | }; | 
|  | </script> | 
|  | <script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/underscore.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/searchtools_custom.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/doctools.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/selectlang.js" type="text/javascript"></script> | 
|  | <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> | 
|  | <script type="text/javascript"> jQuery(function() { Search.loadIndex("/searchindex.js"); Search.init();}); </script> | 
|  | <script> | 
|  | (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ | 
|  | (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new | 
|  | Date();a=s.createElement(o), | 
|  | m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) | 
|  | })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); | 
|  |  | 
|  | ga('create', 'UA-96378503-1', 'auto'); | 
|  | ga('send', 'pageview'); | 
|  |  | 
|  | </script> | 
|  | <!-- --> | 
|  | <!-- <script type="text/javascript" src="../../../_static/jquery.js"></script> --> | 
|  | <!-- --> | 
|  | <!-- <script type="text/javascript" src="../../../_static/underscore.js"></script> --> | 
|  | <!-- --> | 
|  | <!-- <script type="text/javascript" src="../../../_static/doctools.js"></script> --> | 
|  | <!-- --> | 
|  | <!-- <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> --> | 
|  | <!-- --> | 
|  | <link href="../index.html" rel="up" title="MXNet - Python API"/> | 
|  | <link href="linalg.html" rel="next" title="Linear Algebra NDArray API"> | 
|  | <link href="ndarray.html" rel="prev" title="NDArray API"> | 
|  | <link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/> | 
|  | </link></link></link></head> | 
|  | <body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document"> | 
|  | <div class="content-block"><div class="navbar navbar-fixed-top"> | 
|  | <div class="container" id="navContainer"> | 
|  | <div class="innder" id="header-inner"> | 
|  | <h1 id="logo-wrap"> | 
|  | <a href="../../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a> | 
|  | </h1> | 
|  | <nav class="nav-bar" id="main-nav"> | 
|  | <a class="main-nav-link" href="../../../install/index.html">Install</a> | 
|  | <a class="main-nav-link" href="../../../tutorials/index.html">Tutorials</a> | 
|  | <span id="dropdown-menu-position-anchor"> | 
|  | <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a> | 
|  | <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> | 
|  | <li><a class="main-nav-link" href="../../../gluon/index.html">About</a></li> | 
|  | <li><a class="main-nav-link" href="http://gluon.mxnet.io">Tutorials</a></li> | 
|  | </ul> | 
|  | </span> | 
|  | <span id="dropdown-menu-position-anchor"> | 
|  | <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a> | 
|  | <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> | 
|  | <li><a class="main-nav-link" href="../../../api/python/index.html">Python</a></li> | 
|  | <li><a class="main-nav-link" href="../../../api/scala/index.html">Scala</a></li> | 
|  | <li><a class="main-nav-link" href="../../../api/r/index.html">R</a></li> | 
|  | <li><a class="main-nav-link" href="../../../api/julia/index.html">Julia</a></li> | 
|  | <li><a class="main-nav-link" href="../../../api/c++/index.html">C++</a></li> | 
|  | <li><a class="main-nav-link" href="../../../api/perl/index.html">Perl</a></li> | 
|  | </ul> | 
|  | </span> | 
|  | <span id="dropdown-menu-position-anchor-docs"> | 
|  | <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a> | 
|  | <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs"> | 
|  | <li><a class="main-nav-link" href="../../../faq/index.html">FAQ</a></li> | 
|  | <li><a class="main-nav-link" href="../../../architecture/index.html">Architecture</a></li> | 
|  | <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example">Examples</a></li> | 
|  | <li><a class="main-nav-link" href="../../../model_zoo/index.html">Model Zoo</a></li> | 
|  | </ul> | 
|  | </span> | 
|  | <a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a> | 
|  | <span id="dropdown-menu-position-anchor-community"> | 
|  | <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a> | 
|  | <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community"> | 
|  | <li><a class="main-nav-link" href="../../../community/index.html">Community</a></li> | 
|  | <li><a class="main-nav-link" href="../../../community/contribute.html">Contribute</a></li> | 
|  | <li><a class="main-nav-link" href="../../../community/powered_by.html">Powered By</a></li> | 
|  | </ul> | 
|  | </span> | 
|  | <a class="main-nav-link" href="http://discuss.mxnet.io">Discuss</a> | 
|  | <span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">Versions(1.0.0)<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/>1.1.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/1.0.0/index.html>1.0.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></span></nav> | 
|  | <script> function getRootPath(){ return "../../../" } </script> | 
|  | <div class="burgerIcon dropdown"> | 
|  | <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a> | 
|  | <ul class="dropdown-menu" id="burgerMenu"> | 
|  | <li><a href="../../../install/index.html">Install</a></li> | 
|  | <li><a class="main-nav-link" href="../../../tutorials/index.html">Tutorials</a></li> | 
|  | <li class="dropdown-submenu"> | 
|  | <a href="#" tabindex="-1">Community</a> | 
|  | <ul class="dropdown-menu"> | 
|  | <li><a href="../../../community/index.html" tabindex="-1">Community</a></li> | 
|  | <li><a href="../../../community/contribute.html" tabindex="-1">Contribute</a></li> | 
|  | <li><a href="../../../community/powered_by.html" tabindex="-1">Powered By</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | <li class="dropdown-submenu"> | 
|  | <a href="#" tabindex="-1">API</a> | 
|  | <ul class="dropdown-menu"> | 
|  | <li><a href="../../../api/python/index.html" tabindex="-1">Python</a> | 
|  | </li> | 
|  | <li><a href="../../../api/scala/index.html" tabindex="-1">Scala</a> | 
|  | </li> | 
|  | <li><a href="../../../api/r/index.html" tabindex="-1">R</a> | 
|  | </li> | 
|  | <li><a href="../../../api/julia/index.html" tabindex="-1">Julia</a> | 
|  | </li> | 
|  | <li><a href="../../../api/c++/index.html" tabindex="-1">C++</a> | 
|  | </li> | 
|  | <li><a href="../../../api/perl/index.html" tabindex="-1">Perl</a> | 
|  | </li> | 
|  | </ul> | 
|  | </li> | 
|  | <li class="dropdown-submenu"> | 
|  | <a href="#" tabindex="-1">Docs</a> | 
|  | <ul class="dropdown-menu"> | 
|  | <li><a href="../../../tutorials/index.html" tabindex="-1">Tutorials</a></li> | 
|  | <li><a href="../../../faq/index.html" tabindex="-1">FAQ</a></li> | 
|  | <li><a href="../../../architecture/index.html" tabindex="-1">Architecture</a></li> | 
|  | <li><a href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example" tabindex="-1">Examples</a></li> | 
|  | <li><a href="../../../model_zoo/index.html" tabindex="-1">Model Zoo</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | <li><a href="../../../architecture/index.html">Architecture</a></li> | 
|  | <li><a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a></li> | 
|  | <li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">Versions(1.0.0)</a><ul class="dropdown-menu"><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/>1.1.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/1.0.0/index.html>1.0.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></li></ul> | 
|  | </div> | 
|  | <div class="plusIcon dropdown"> | 
|  | <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a> | 
|  | <ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul> | 
|  | </div> | 
|  | <div id="search-input-wrap"> | 
|  | <form action="../../../search.html" autocomplete="off" class="" method="get" role="search"> | 
|  | <div class="form-group inner-addon left-addon"> | 
|  | <i class="glyphicon glyphicon-search"></i> | 
|  | <input class="form-control" name="q" placeholder="Search" type="text"/> | 
|  | </div> | 
|  | <input name="check_keywords" type="hidden" value="yes"/> | 
|  | <input name="area" type="hidden" value="default"> | 
|  | </input></form> | 
|  | <div id="search-preview"></div> | 
|  | </div> | 
|  | <div id="searchIcon"> | 
|  | <span aria-hidden="true" class="glyphicon glyphicon-search"></span> | 
|  | </div> | 
|  | <!-- <div id="lang-select-wrap"> --> | 
|  | <!--   <label id="lang-select-label"> --> | 
|  | <!--     <\!-- <i class="fa fa-globe"></i> -\-> --> | 
|  | <!--     <span></span> --> | 
|  | <!--   </label> --> | 
|  | <!--   <select id="lang-select"> --> | 
|  | <!--     <option value="en">Eng</option> --> | 
|  | <!--     <option value="zh">中文</option> --> | 
|  | <!--   </select> --> | 
|  | <!-- </div> --> | 
|  | <!--     <a id="mobile-nav-toggle"> | 
|  | <span class="mobile-nav-toggle-bar"></span> | 
|  | <span class="mobile-nav-toggle-bar"></span> | 
|  | <span class="mobile-nav-toggle-bar"></span> | 
|  | </a> --> | 
|  | </div> | 
|  | </div> | 
|  | </div> | 
|  | <script type="text/javascript"> | 
|  | $('body').css('background', 'white'); | 
|  | </script> | 
|  | <div class="container"> | 
|  | <div class="row"> | 
|  | <div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation"> | 
|  | <div class="sphinxsidebarwrapper"> | 
|  | <ul class="current"> | 
|  | <li class="toctree-l1 current"><a class="reference internal" href="../index.html">Python Documents</a><ul class="current"> | 
|  | <li class="toctree-l2 current"><a class="reference internal" href="../index.html#ndarray-api">NDArray API</a><ul class="current"> | 
|  | <li class="toctree-l3"><a class="reference internal" href="ndarray.html">NDArray API</a></li> | 
|  | <li class="toctree-l3 current"><a class="current reference internal" href="">Random Distribution Generator NDArray API</a><ul> | 
|  | <li class="toctree-l4"><a class="reference internal" href="#overview">Overview</a></li> | 
|  | <li class="toctree-l4"><a class="reference internal" href="#random-distribution-generator">Random Distribution Generator</a></li> | 
|  | <li class="toctree-l4"><a class="reference internal" href="#api-reference">API Reference</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | <li class="toctree-l3"><a class="reference internal" href="linalg.html">Linear Algebra NDArray API</a></li> | 
|  | <li class="toctree-l3"><a class="reference internal" href="sparse.html">Sparse NDArray API</a></li> | 
|  | <li class="toctree-l3"><a class="reference internal" href="contrib.html">Contrib NDArray API</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#symbol-api">Symbol API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#module-api">Module API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#autograd-api">Autograd API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#gluon-api">Gluon API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#kvstore-api">KVStore API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#io-api">IO API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#image-api">Image API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#optimization-api">Optimization API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#callback-api">Callback API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#metric-api">Metric API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#run-time-compilation-api">Run-Time Compilation API</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../r/index.html">R Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../julia/index.html">Julia Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../c++/index.html">C++ Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../scala/index.html">Scala Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../perl/index.html">Perl Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../../faq/index.html">HowTo Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../../architecture/index.html">System Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../../tutorials/index.html">Tutorials</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../../community/index.html">Community</a></li> | 
|  | </ul> | 
|  | </div> | 
|  | </div> | 
|  | <div class="content"> | 
|  | <div class="page-tracker"></div> | 
|  | <div class="section" id="random-distribution-generator-ndarray-api"> | 
|  | <span id="random-distribution-generator-ndarray-api"></span><h1>Random Distribution Generator NDArray API<a class="headerlink" href="#random-distribution-generator-ndarray-api" title="Permalink to this headline">¶</a></h1> | 
|  | <div class="section" id="overview"> | 
|  | <span id="overview"></span><h2>Overview<a class="headerlink" href="#overview" title="Permalink to this headline">¶</a></h2> | 
|  | <p>This document lists the random distribution generator routines of the <em>n</em>-dimensional array package:</p> | 
|  | <table border="1" class="longtable docutils"> | 
|  | <colgroup> | 
|  | <col width="10%"/> | 
|  | <col width="90%"/> | 
|  | </colgroup> | 
|  | <tbody valign="top"> | 
|  | <tr class="row-odd"><td><a class="reference internal" href="#module-mxnet.ndarray.random" title="mxnet.ndarray.random"><code class="xref py py-obj docutils literal"><span class="pre">mxnet.ndarray.random</span></code></a></td> | 
|  | <td>Random distribution generator NDArray API of MXNet.</td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <p>The <code class="docutils literal"><span class="pre">Random</span> <span class="pre">Distribution</span> <span class="pre">Generator</span> <span class="pre">NDArray</span></code> API, defined in the <code class="docutils literal"><span class="pre">ndarray.random</span></code> package, provides | 
|  | imperative random distribution generator operations on CPU/GPU.</p> | 
|  | <p>In the rest of this document, we list routines provided by the <code class="docutils literal"><span class="pre">ndarray.random</span></code> package.</p> | 
|  | </div> | 
|  | <div class="section" id="random-distribution-generator"> | 
|  | <span id="random-distribution-generator"></span><h2>Random Distribution Generator<a class="headerlink" href="#random-distribution-generator" title="Permalink to this headline">¶</a></h2> | 
|  | <table border="1" class="longtable docutils"> | 
|  | <colgroup> | 
|  | <col width="10%"/> | 
|  | <col width="90%"/> | 
|  | </colgroup> | 
|  | <tbody valign="top"> | 
|  | <tr class="row-odd"><td><a class="reference internal" href="#mxnet.ndarray.random.exponential" title="mxnet.ndarray.random.exponential"><code class="xref py py-obj docutils literal"><span class="pre">exponential</span></code></a></td> | 
|  | <td>Draw samples from an exponential distribution.</td> | 
|  | </tr> | 
|  | <tr class="row-even"><td><a class="reference internal" href="#mxnet.ndarray.random.gamma" title="mxnet.ndarray.random.gamma"><code class="xref py py-obj docutils literal"><span class="pre">gamma</span></code></a></td> | 
|  | <td>Draw random samples from a gamma distribution.</td> | 
|  | </tr> | 
|  | <tr class="row-odd"><td><a class="reference internal" href="#mxnet.ndarray.random.generalized_negative_binomial" title="mxnet.ndarray.random.generalized_negative_binomial"><code class="xref py py-obj docutils literal"><span class="pre">generalized_negative_binomial</span></code></a></td> | 
|  | <td>Draw random samples from a generalized negative binomial distribution.</td> | 
|  | </tr> | 
|  | <tr class="row-even"><td><a class="reference internal" href="#mxnet.ndarray.random.negative_binomial" title="mxnet.ndarray.random.negative_binomial"><code class="xref py py-obj docutils literal"><span class="pre">negative_binomial</span></code></a></td> | 
|  | <td>Draw random samples from a negative binomial distribution.</td> | 
|  | </tr> | 
|  | <tr class="row-odd"><td><a class="reference internal" href="#mxnet.ndarray.random.normal" title="mxnet.ndarray.random.normal"><code class="xref py py-obj docutils literal"><span class="pre">normal</span></code></a></td> | 
|  | <td>Draw random samples from a normal (Gaussian) distribution.</td> | 
|  | </tr> | 
|  | <tr class="row-even"><td><a class="reference internal" href="#mxnet.ndarray.random.poisson" title="mxnet.ndarray.random.poisson"><code class="xref py py-obj docutils literal"><span class="pre">poisson</span></code></a></td> | 
|  | <td>Draw random samples from a Poisson distribution.</td> | 
|  | </tr> | 
|  | <tr class="row-odd"><td><a class="reference internal" href="#mxnet.ndarray.random.uniform" title="mxnet.ndarray.random.uniform"><code class="xref py py-obj docutils literal"><span class="pre">uniform</span></code></a></td> | 
|  | <td>Draw random samples from a uniform distribution.</td> | 
|  | </tr> | 
|  | <tr class="row-even"><td><a class="reference internal" href="../symbol/random.html#mxnet.random.seed" title="mxnet.random.seed"><code class="xref py py-obj docutils literal"><span class="pre">mxnet.random.seed</span></code></a></td> | 
|  | <td>Seeds the random number generators in MXNet.</td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | </div> | 
|  | <div class="section" id="api-reference"> | 
|  | <span id="api-reference"></span><h2>API Reference<a class="headerlink" href="#api-reference" title="Permalink to this headline">¶</a></h2> | 
|  | <script src="../../../_static/js/auto_module_index.js" type="text/javascript"></script><span class="target" id="module-mxnet.ndarray.random"></span><p>Random distribution generator NDArray API of MXNet.</p> | 
|  | <dl class="function"> | 
|  | <dt id="mxnet.ndarray.random.uniform"> | 
|  | <code class="descclassname">mxnet.ndarray.random.</code><code class="descname">uniform</code><span class="sig-paren">(</span><em>low=0</em>, <em>high=1</em>, <em>shape=_Null</em>, <em>dtype=_Null</em>, <em>ctx=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/ndarray/random.html#uniform"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.uniform" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Draw random samples from a uniform distribution.</p> | 
|  | <p>Samples are uniformly distributed over the half-open interval <em>[low, high)</em> | 
|  | (includes <em>low</em>, but excludes <em>high</em>).</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>low</strong> (<em>float or NDArray</em>) – Lower boundary of the output interval. All values generated will be | 
|  | greater than or equal to low. The default value is 0.</li> | 
|  | <li><strong>high</strong> (<em>float or NDArray</em>) – Upper boundary of the output interval. All values generated will be | 
|  | less than high. The default value is 1.0.</li> | 
|  | <li><strong>shape</strong> (<em>int or tuple of ints</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>low</cite> and | 
|  | <cite>high</cite> are scalars, output shape will be <cite>(m, n)</cite>. If <cite>low</cite> and <cite>high</cite> | 
|  | are NDArrays with shape, e.g., <cite>(x, y)</cite>, then output will have shape | 
|  | <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each <cite>[low, high)</cite> pair.</li> | 
|  | <li><strong>dtype</strong> (<em>{'float16','float32', 'float64'}</em>) – Data type of output samples. Default is ‘float32’</li> | 
|  | <li><strong>ctx</strong> (<em>Context</em>) – Device context of output. Default is current context. Overridden by | 
|  | <cite>low.context</cite> when <cite>low</cite> is an NDArray.</li> | 
|  | <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Store output to an existing NDArray.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <p class="rubric">Examples</p> | 
|  | <div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> | 
|  | <span class="go">[ 0.54881352]</span> | 
|  | <span class="go"><ndarray 1="" @cpu(0)<="" span=""> | 
|  | <span class="go">>>>> mx.nd.random.uniform(0, 1, ctx=mx.gpu(0))</span> | 
|  | <span class="go">[ 0.92514056]</span> | 
|  | <span class="go"><ndarray 1="" @gpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> | 
|  | <span class="go">[[ 0.71589124  0.08976638]</span> | 
|  | <span class="go"> [ 0.69450343 -0.15269041]]</span> | 
|  | <span class="go"><ndarray 2x2="" @cpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">low</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> | 
|  | <span class="gp">>>> </span><span class="n">high</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">])</span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="n">low</span><span class="p">,</span> <span class="n">high</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> | 
|  | <span class="go">[[ 1.78653979  1.93707538]</span> | 
|  | <span class="go"> [ 2.01311183  2.37081361]</span> | 
|  | <span class="go"> [ 3.30491424  3.69977832]]</span> | 
|  | <span class="go"><ndarray 3x2="" @cpu(0)=""></ndarray></span> | 
|  | </ndarray></span></pre></div> | 
|  | </div> | 
|  | </dd></dl> | 
|  | <dl class="function"> | 
|  | <dt id="mxnet.ndarray.random.normal"> | 
|  | <code class="descclassname">mxnet.ndarray.random.</code><code class="descname">normal</code><span class="sig-paren">(</span><em>loc=0</em>, <em>scale=1</em>, <em>shape=_Null</em>, <em>dtype=_Null</em>, <em>ctx=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/ndarray/random.html#normal"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.normal" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Draw random samples from a normal (Gaussian) distribution.</p> | 
|  | <p>Samples are distributed according to a normal distribution parametrized | 
|  | by <em>loc</em> (mean) and <em>scale</em> (standard deviation).</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>loc</strong> (<em>float or NDArray</em>) – Mean (centre) of the distribution.</li> | 
|  | <li><strong>scale</strong> (<em>float or NDArray</em>) – Standard deviation (spread or width) of the distribution.</li> | 
|  | <li><strong>shape</strong> (<em>int or tuple of ints</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>loc</cite> and | 
|  | <cite>scale</cite> are scalars, output shape will be <cite>(m, n)</cite>. If <cite>loc</cite> and <cite>scale</cite> | 
|  | are NDArrays with shape, e.g., <cite>(x, y)</cite>, then output will have shape | 
|  | <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each <cite>[loc, scale)</cite> pair.</li> | 
|  | <li><strong>dtype</strong> (<em>{'float16','float32', 'float64'}</em>) – Data type of output samples. Default is ‘float32’</li> | 
|  | <li><strong>ctx</strong> (<em>Context</em>) – Device context of output. Default is current context. Overridden by | 
|  | <cite>loc.context</cite> when <cite>loc</cite> is an NDArray.</li> | 
|  | <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Store output to an existing NDArray.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <p class="rubric">Examples</p> | 
|  | <div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> | 
|  | <span class="go">[ 2.21220636]</span> | 
|  | <span class="go"><ndarray 1="" @cpu(0)=""></ndarray></span> | 
|  | <span class="go">>>>> mx.nd.random.normal(0, 1, ctx=mx.gpu(0))</span> | 
|  | <span class="go">[ 0.29253659]</span> | 
|  | <span class="go"><ndarray 1="" @gpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> | 
|  | <span class="go">[-0.2259962  -0.51619542]</span> | 
|  | <span class="go"><ndarray 2="" @cpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">loc</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> | 
|  | <span class="gp">>>> </span><span class="n">scale</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">])</span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">loc</span><span class="p">,</span> <span class="n">scale</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> | 
|  | <span class="go">[[ 0.55912292  3.19566321]</span> | 
|  | <span class="go"> [ 1.91728961  2.47706747]</span> | 
|  | <span class="go"> [ 2.79666662  5.44254589]]</span> | 
|  | <span class="go"><ndarray 3x2="" @cpu(0)=""></ndarray></span> | 
|  | </pre></div> | 
|  | </div> | 
|  | </dd></dl> | 
|  | <dl class="function"> | 
|  | <dt id="mxnet.ndarray.random.poisson"> | 
|  | <code class="descclassname">mxnet.ndarray.random.</code><code class="descname">poisson</code><span class="sig-paren">(</span><em>lam=1</em>, <em>shape=_Null</em>, <em>dtype=_Null</em>, <em>ctx=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/ndarray/random.html#poisson"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.poisson" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Draw random samples from a Poisson distribution.</p> | 
|  | <p>Samples are distributed according to a Poisson distribution parametrized | 
|  | by <em>lambda</em> (rate). Samples will always be returned as a floating point data type.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>lam</strong> (<em>float or NDArray</em>) – Expectation of interval, should be >= 0.</li> | 
|  | <li><strong>shape</strong> (<em>int or tuple of ints</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>lam</cite> is | 
|  | a scalar, output shape will be <cite>(m, n)</cite>. If <cite>lam</cite> | 
|  | is an NDArray with shape, e.g., <cite>(x, y)</cite>, then output will have shape | 
|  | <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each entry in <cite>lam</cite>.</li> | 
|  | <li><strong>dtype</strong> (<em>{'float16','float32', 'float64'}</em>) – Data type of output samples. Default is ‘float32’</li> | 
|  | <li><strong>ctx</strong> (<em>Context</em>) – Device context of output. Default is current context. Overridden by | 
|  | <cite>lam.context</cite> when <cite>lam</cite> is an NDArray.</li> | 
|  | <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Store output to an existing NDArray.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <p class="rubric">Examples</p> | 
|  | <div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">poisson</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> | 
|  | <span class="go">[ 1.]</span> | 
|  | <span class="go"><ndarray 1="" @cpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">poisson</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> | 
|  | <span class="go">[ 0.  2.]</span> | 
|  | <span class="go"><ndarray 2="" @cpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">lam</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">poisson</span><span class="p">(</span><span class="n">lam</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> | 
|  | <span class="go">[[ 1.  3.]</span> | 
|  | <span class="go"> [ 3.  2.]</span> | 
|  | <span class="go"> [ 2.  3.]]</span> | 
|  | <span class="go"><ndarray 3x2="" @cpu(0)=""></ndarray></span> | 
|  | </pre></div> | 
|  | </div> | 
|  | </dd></dl> | 
|  | <dl class="function"> | 
|  | <dt id="mxnet.ndarray.random.exponential"> | 
|  | <code class="descclassname">mxnet.ndarray.random.</code><code class="descname">exponential</code><span class="sig-paren">(</span><em>scale=1</em>, <em>shape=_Null</em>, <em>dtype=_Null</em>, <em>ctx=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/ndarray/random.html#exponential"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.exponential" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Draw samples from an exponential distribution.</p> | 
|  | <p>Its probability density function is</p> | 
|  | <blockquote> | 
|  | <div>f(x; frac{1}{beta}) = frac{1}{beta} exp(-frac{x}{beta}),</div></blockquote> | 
|  | <p>for x > 0 and 0 elsewhere. beta is the scale parameter, which is the | 
|  | inverse of the rate parameter lambda = 1/beta.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>scale</strong> (<em>float or NDArray</em>) – The scale parameter, beta = 1/lambda.</li> | 
|  | <li><strong>shape</strong> (<em>int or tuple of ints</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>scale</cite> is | 
|  | a scalar, output shape will be <cite>(m, n)</cite>. If <cite>scale</cite> | 
|  | is an NDArray with shape, e.g., <cite>(x, y)</cite>, then output will have shape | 
|  | <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each entry in <cite>scale</cite>.</li> | 
|  | <li><strong>dtype</strong> (<em>{'float16','float32', 'float64'}</em>) – Data type of output samples. Default is ‘float32’</li> | 
|  | <li><strong>ctx</strong> (<em>Context</em>) – Device context of output. Default is current context. Overridden by | 
|  | <cite>scale.context</cite> when <cite>scale</cite> is an NDArray.</li> | 
|  | <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Store output to an existing NDArray.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <p class="rubric">Examples</p> | 
|  | <div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">exponential</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> | 
|  | <span class="go">[ 0.79587454]</span> | 
|  | <span class="go"><ndarray 1="" @cpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">exponential</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> | 
|  | <span class="go">[ 0.89856035  1.25593066]</span> | 
|  | <span class="go"><ndarray 2="" @cpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">scale</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">exponential</span><span class="p">(</span><span class="n">scale</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> | 
|  | <span class="go">[[  0.41063145   0.42140478]</span> | 
|  | <span class="go"> [  2.59407091  10.12439728]</span> | 
|  | <span class="go"> [  2.42544937   1.14260709]]</span> | 
|  | <span class="go"><ndarray 3x2="" @cpu(0)=""></ndarray></span> | 
|  | </pre></div> | 
|  | </div> | 
|  | </dd></dl> | 
|  | <dl class="function"> | 
|  | <dt id="mxnet.ndarray.random.gamma"> | 
|  | <code class="descclassname">mxnet.ndarray.random.</code><code class="descname">gamma</code><span class="sig-paren">(</span><em>alpha=1</em>, <em>beta=1</em>, <em>shape=_Null</em>, <em>dtype=_Null</em>, <em>ctx=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/ndarray/random.html#gamma"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.gamma" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Draw random samples from a gamma distribution.</p> | 
|  | <p>Samples are distributed according to a gamma distribution parametrized | 
|  | by <em>alpha</em> (shape) and <em>beta</em> (scale).</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>alpha</strong> (<em>float or NDArray</em>) – The shape of the gamma distribution. Should be greater than zero.</li> | 
|  | <li><strong>beta</strong> (<em>float or NDArray</em>) – The scale of the gamma distribution. Should be greater than zero. | 
|  | Default is equal to 1.</li> | 
|  | <li><strong>shape</strong> (<em>int or tuple of ints</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>alpha</cite> and | 
|  | <cite>beta</cite> are scalars, output shape will be <cite>(m, n)</cite>. If <cite>alpha</cite> and <cite>beta</cite> | 
|  | are NDArrays with shape, e.g., <cite>(x, y)</cite>, then output will have shape | 
|  | <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each <cite>[alpha, beta)</cite> pair.</li> | 
|  | <li><strong>dtype</strong> (<em>{'float16','float32', 'float64'}</em>) – Data type of output samples. Default is ‘float32’</li> | 
|  | <li><strong>ctx</strong> (<em>Context</em>) – Device context of output. Default is current context. Overridden by | 
|  | <cite>alpha.context</cite> when <cite>alpha</cite> is an NDArray.</li> | 
|  | <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Store output to an existing NDArray.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <p class="rubric">Examples</p> | 
|  | <div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">gamma</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> | 
|  | <span class="go">[ 1.93308783]</span> | 
|  | <span class="go"><ndarray 1="" @cpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">gamma</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> | 
|  | <span class="go">[ 0.48216391  2.09890771]</span> | 
|  | <span class="go"><ndarray 2="" @cpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">alpha</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> | 
|  | <span class="gp">>>> </span><span class="n">beta</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">])</span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">gamma</span><span class="p">(</span><span class="n">alpha</span><span class="p">,</span> <span class="n">beta</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> | 
|  | <span class="go">[[  3.24343276   0.94137681]</span> | 
|  | <span class="go"> [  3.52734375   0.45568955]</span> | 
|  | <span class="go"> [ 14.26264095  14.0170126 ]]</span> | 
|  | <span class="go"><ndarray 3x2="" @cpu(0)=""></ndarray></span> | 
|  | </pre></div> | 
|  | </div> | 
|  | </dd></dl> | 
|  | <dl class="function"> | 
|  | <dt id="mxnet.ndarray.random.negative_binomial"> | 
|  | <code class="descclassname">mxnet.ndarray.random.</code><code class="descname">negative_binomial</code><span class="sig-paren">(</span><em>k=1</em>, <em>p=1</em>, <em>shape=_Null</em>, <em>dtype=_Null</em>, <em>ctx=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/ndarray/random.html#negative_binomial"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.negative_binomial" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Draw random samples from a negative binomial distribution.</p> | 
|  | <p>Samples are distributed according to a negative binomial distribution | 
|  | parametrized by <em>k</em> (limit of unsuccessful experiments) and <em>p</em> (failure | 
|  | probability in each experiment). Samples will always be returned as a | 
|  | floating point data type.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>k</strong> (<em>float or NDArray</em>) – Limit of unsuccessful experiments, > 0.</li> | 
|  | <li><strong>p</strong> (<em>float or NDArray</em>) – Failure probability in each experiment, >= 0 and <=1.</li> | 
|  | <li><strong>shape</strong> (<em>int or tuple of ints</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>k</cite> and | 
|  | <cite>p</cite> are scalars, output shape will be <cite>(m, n)</cite>. If <cite>k</cite> and <cite>p</cite> | 
|  | are NDArrays with shape, e.g., <cite>(x, y)</cite>, then output will have shape | 
|  | <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each <cite>[k, p)</cite> pair.</li> | 
|  | <li><strong>dtype</strong> (<em>{'float16','float32', 'float64'}</em>) – Data type of output samples. Default is ‘float32’</li> | 
|  | <li><strong>ctx</strong> (<em>Context</em>) – Device context of output. Default is current context. Overridden by | 
|  | <cite>k.context</cite> when <cite>k</cite> is an NDArray.</li> | 
|  | <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Store output to an existing NDArray.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <p class="rubric">Examples</p> | 
|  | <div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">negative_binomial</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">)</span> | 
|  | <span class="go">[ 4.]</span> | 
|  | <span class="go"><ndarray 1="" @cpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">negative_binomial</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> | 
|  | <span class="go">[ 3.  4.]</span> | 
|  | <span class="go"><ndarray 2="" @cpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">k</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> | 
|  | <span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">0.2</span><span class="p">,</span><span class="mf">0.4</span><span class="p">,</span><span class="mf">0.6</span><span class="p">])</span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">negative_binomial</span><span class="p">(</span><span class="n">k</span><span class="p">,</span> <span class="n">p</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> | 
|  | <span class="go">[[ 3.  2.]</span> | 
|  | <span class="go"> [ 4.  4.]</span> | 
|  | <span class="go"> [ 0.  5.]]</span> | 
|  | <span class="go"><ndarray 3x2="" @cpu(0)=""></ndarray></span> | 
|  | </pre></div> | 
|  | </div> | 
|  | </dd></dl> | 
|  | <dl class="function"> | 
|  | <dt id="mxnet.ndarray.random.generalized_negative_binomial"> | 
|  | <code class="descclassname">mxnet.ndarray.random.</code><code class="descname">generalized_negative_binomial</code><span class="sig-paren">(</span><em>mu=1</em>, <em>alpha=1</em>, <em>shape=_Null</em>, <em>dtype=_Null</em>, <em>ctx=None</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/ndarray/random.html#generalized_negative_binomial"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.generalized_negative_binomial" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Draw random samples from a generalized negative binomial distribution.</p> | 
|  | <p>Samples are distributed according to a generalized negative binomial | 
|  | distribution parametrized by <em>mu</em> (mean) and <em>alpha</em> (dispersion). | 
|  | <em>alpha</em> is defined as <em>1/k</em> where <em>k</em> is the failure limit of the | 
|  | number of unsuccessful experiments (generalized to real numbers). | 
|  | Samples will always be returned as a floating point data type.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>mu</strong> (<em>float or NDArray</em>) – Mean of the negative binomial distribution.</li> | 
|  | <li><strong>alpha</strong> (<em>float or NDArray</em>) – Alpha (dispersion) parameter of the negative binomial distribution.</li> | 
|  | <li><strong>shape</strong> (<em>int or tuple of ints</em>) – The number of samples to draw. If shape is, e.g., <cite>(m, n)</cite> and <cite>mu</cite> and | 
|  | <cite>alpha</cite> are scalars, output shape will be <cite>(m, n)</cite>. If <cite>mu</cite> and <cite>alpha</cite> | 
|  | are NDArrays with shape, e.g., <cite>(x, y)</cite>, then output will have shape | 
|  | <cite>(x, y, m, n)</cite>, where <cite>m*n</cite> samples are drawn for each <cite>[mu, alpha)</cite> pair.</li> | 
|  | <li><strong>dtype</strong> (<em>{'float16','float32', 'float64'}</em>) – Data type of output samples. Default is ‘float32’</li> | 
|  | <li><strong>ctx</strong> (<em>Context</em>) – Device context of output. Default is current context. Overridden by | 
|  | <cite>mu.context</cite> when <cite>mu</cite> is an NDArray.</li> | 
|  | <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Store output to an existing NDArray.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <p class="rubric">Examples</p> | 
|  | <div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">generalized_negative_binomial</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">)</span> | 
|  | <span class="go">[ 19.]</span> | 
|  | <span class="go"><ndarray 1="" @cpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">generalized_negative_binomial</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,))</span> | 
|  | <span class="go">[ 30.  21.]</span> | 
|  | <span class="go"><ndarray 2="" @cpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">mu</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">])</span> | 
|  | <span class="gp">>>> </span><span class="n">alpha</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">0.2</span><span class="p">,</span><span class="mf">0.4</span><span class="p">,</span><span class="mf">0.6</span><span class="p">])</span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">generalized_negative_binomial</span><span class="p">(</span><span class="n">mu</span><span class="p">,</span> <span class="n">alpha</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> | 
|  | <span class="go">[[ 4.  0.]</span> | 
|  | <span class="go"> [ 3.  2.]</span> | 
|  | <span class="go"> [ 6.  2.]]</span> | 
|  | <span class="go"><ndarray 3x2="" @cpu(0)=""></ndarray></span> | 
|  | </pre></div> | 
|  | </div> | 
|  | </dd></dl> | 
|  | <dl class="function"> | 
|  | <dt id="mxnet.ndarray.random.multinomial"> | 
|  | <code class="descclassname">mxnet.ndarray.random.</code><code class="descname">multinomial</code><span class="sig-paren">(</span><em>data</em>, <em>shape=_Null</em>, <em>get_prob=False</em>, <em>out=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/ndarray/random.html#multinomial"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.ndarray.random.multinomial" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Concurrent sampling from multiple multinomial distributions.</p> | 
|  | <div class="admonition note"> | 
|  | <p class="first admonition-title">Note</p> | 
|  | <p class="last">The input distribution must be normalized, i.e. <cite>data</cite> must sum to | 
|  | 1 along its last dimension.</p> | 
|  | </div> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>data</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – An <em>n</em> dimensional array whose last dimension has length <cite>k</cite>, where | 
|  | <cite>k</cite> is the number of possible outcomes of each multinomial distribution. | 
|  | For example, data with shape <cite>(m, n, k)</cite> specifies <cite>m*n</cite> multinomial | 
|  | distributions each with <cite>k</cite> possible outcomes.</li> | 
|  | <li><strong>shape</strong> (<em>int or tuple of ints</em>) – The number of samples to draw from each distribution. If shape is empty | 
|  | one sample will be drawn from each distribution.</li> | 
|  | <li><strong>get_prob</strong> (<em>bool</em>) – If true, a second array containing log likelihood of the drawn | 
|  | samples will also be returned. | 
|  | This is usually used for reinforcement learning, where you can provide | 
|  | reward as head gradient w.r.t. this array to estimate gradient.</li> | 
|  | <li><strong>out</strong> (<a class="reference internal" href="ndarray.html#mxnet.ndarray.NDArray" title="mxnet.ndarray.NDArray"><em>NDArray</em></a>) – Store output to an existing NDArray.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <p class="rubric">Examples</p> | 
|  | <div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">probs</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">0</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.4</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">,</span> <span class="mi">0</span><span class="p">]])</span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">multinomial</span><span class="p">(</span><span class="n">probs</span><span class="p">)</span> | 
|  | <span class="go">[3 1]</span> | 
|  | <span class="go"><ndarray 2="" @cpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">multinomial</span><span class="p">(</span><span class="n">probs</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> | 
|  | <span class="go">[[4 4]</span> | 
|  | <span class="go"> [1 2]]</span> | 
|  | <span class="go"><ndarray 2x2="" @cpu(0)=""></ndarray></span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">multinomial</span><span class="p">(</span><span class="n">probs</span><span class="p">,</span> <span class="n">get_prob</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span> | 
|  | <span class="go">[3 2]</span> | 
|  | <span class="go"><ndarray 2="" @cpu(0)=""></ndarray></span> | 
|  | <span class="go">[-1.20397282 -1.60943794]</span> | 
|  | <span class="go"><ndarray 2="" @cpu(0)=""></ndarray></span> | 
|  | </pre></div> | 
|  | </div> | 
|  | </dd></dl> | 
|  | <span class="target" id="module-mxnet.random"></span><p>Random number interface of MXNet.</p> | 
|  | <dl class="function"> | 
|  | <dt id="mxnet.random.seed"> | 
|  | <code class="descclassname">mxnet.random.</code><code class="descname">seed</code><span class="sig-paren">(</span><em>seed_state</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/random.html#seed"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.random.seed" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Seeds the random number generators in MXNet.</p> | 
|  | <p>This affects the behavior of modules in MXNet that uses random number generators, | 
|  | like the dropout operator and <cite>NDArray</cite>‘s random sampling operators.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>seed_state</strong> (<em>int</em>) – The random number seed to set to all devices.</td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <p class="rubric">Notes</p> | 
|  | <p>Random number generators in MXNet are device specific. Therefore, random numbers | 
|  | generated from two devices can be different even if they are seeded using the same seed.</p> | 
|  | <p class="rubric">Example</p> | 
|  | <div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="k">print</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">())</span> | 
|  | <span class="go">[[ 1.36481571 -0.62203991]</span> | 
|  | <span class="go"> [-1.4962182  -0.08511394]]</span> | 
|  | <span class="gp">>>> </span><span class="k">print</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">())</span> | 
|  | <span class="go">[[ 1.09544981 -0.20014545]</span> | 
|  | <span class="go"> [-0.20808885  0.2527658 ]]</span> | 
|  | <span class="go">>>></span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">128</span><span class="p">)</span> | 
|  | <span class="gp">>>> </span><span class="k">print</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">())</span> | 
|  | <span class="go">[[ 0.47400656 -0.75213492]</span> | 
|  | <span class="go"> [ 0.20251541  0.95352972]]</span> | 
|  | <span class="gp">>>> </span><span class="n">mx</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">128</span><span class="p">)</span> | 
|  | <span class="gp">>>> </span><span class="k">print</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">normal</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">())</span> | 
|  | <span class="go">[[ 0.47400656 -0.75213492]</span> | 
|  | <span class="go"> [ 0.20251541  0.95352972]]</span> | 
|  | </pre></div> | 
|  | </div> | 
|  | </dd></dl> | 
|  | <script>auto_index("api-reference");</script></div> | 
|  | </div> | 
|  | </div> | 
|  | </div> | 
|  | <div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation"> | 
|  | <div class="sphinxsidebarwrapper"> | 
|  | <h3><a href="../../../index.html">Table Of Contents</a></h3> | 
|  | <ul> | 
|  | <li><a class="reference internal" href="#">Random Distribution Generator NDArray API</a><ul> | 
|  | <li><a class="reference internal" href="#overview">Overview</a></li> | 
|  | <li><a class="reference internal" href="#random-distribution-generator">Random Distribution Generator</a></li> | 
|  | <li><a class="reference internal" href="#api-reference">API Reference</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | </ul> | 
|  | </div> | 
|  | </div> | 
|  | </div><div class="footer"> | 
|  | <div class="section-disclaimer"> | 
|  | <div class="container"> | 
|  | <div> | 
|  | <img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/> | 
|  | <p> | 
|  | Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF. | 
|  | </p> | 
|  | <p> | 
|  | "Copyright © 2017, The Apache Software Foundation | 
|  | Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation." | 
|  | </p> | 
|  | </div> | 
|  | </div> | 
|  | </div> | 
|  | </div> <!-- pagename != index --> | 
|  | </div> | 
|  | <script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> | 
|  | <script src="../../../_static/js/sidebar.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/js/search.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/js/navbar.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/js/clipboard.min.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/js/copycode.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/js/page.js" type="text/javascript"></script> | 
|  | <script type="text/javascript"> | 
|  | $('body').ready(function () { | 
|  | $('body').css('visibility', 'visible'); | 
|  | }); | 
|  | </script> | 
|  | </body> | 
|  | </html> |