|  | <!DOCTYPE html> | 
|  |  | 
|  | <html lang="en"> | 
|  | <head> | 
|  | <meta charset="utf-8"/> | 
|  | <meta content="IE=edge" http-equiv="X-UA-Compatible"/> | 
|  | <meta content="width=device-width, initial-scale=1" name="viewport"/> | 
|  | <title>Gluon Loss API — mxnet  documentation</title> | 
|  | <link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/> | 
|  | <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/> | 
|  | <link href="../../../_static/basic.css" rel="stylesheet" type="text/css"/> | 
|  | <link href="../../../_static/pygments.css" rel="stylesheet" type="text/css"/> | 
|  | <link href="../../../_static/mxnet.css" rel="stylesheet" type="text/css"> | 
|  | <script type="text/javascript"> | 
|  | var DOCUMENTATION_OPTIONS = { | 
|  | URL_ROOT:    '../../../', | 
|  | VERSION:     '', | 
|  | COLLAPSE_INDEX: false, | 
|  | FILE_SUFFIX: '.html', | 
|  | HAS_SOURCE:  true, | 
|  | SOURCELINK_SUFFIX: '' | 
|  | }; | 
|  | </script> | 
|  | <script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/underscore.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/searchtools_custom.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/doctools.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/selectlang.js" type="text/javascript"></script> | 
|  | <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> | 
|  | <script type="text/javascript"> jQuery(function() { Search.loadIndex("/searchindex.js"); Search.init();}); </script> | 
|  | <script> | 
|  | (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ | 
|  | (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new | 
|  | Date();a=s.createElement(o), | 
|  | m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) | 
|  | })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); | 
|  |  | 
|  | ga('create', 'UA-96378503-1', 'auto'); | 
|  | ga('send', 'pageview'); | 
|  |  | 
|  | </script> | 
|  | <!-- --> | 
|  | <!-- <script type="text/javascript" src="../../../_static/jquery.js"></script> --> | 
|  | <!-- --> | 
|  | <!-- <script type="text/javascript" src="../../../_static/underscore.js"></script> --> | 
|  | <!-- --> | 
|  | <!-- <script type="text/javascript" src="../../../_static/doctools.js"></script> --> | 
|  | <!-- --> | 
|  | <!-- <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> --> | 
|  | <!-- --> | 
|  | <link href="gluon.html" rel="up" title="Gluon Package"/> | 
|  | <link href="data.html" rel="next" title="Gluon Data API"> | 
|  | <link href="rnn.html" rel="prev" title="Gluon Recurrent Neural Network API"> | 
|  | <link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/> | 
|  | </link></link></link></head> | 
|  | <body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document"> | 
|  | <div class="content-block"><div class="navbar navbar-fixed-top"> | 
|  | <div class="container" id="navContainer"> | 
|  | <div class="innder" id="header-inner"> | 
|  | <h1 id="logo-wrap"> | 
|  | <a href="../../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a> | 
|  | </h1> | 
|  | <nav class="nav-bar" id="main-nav"> | 
|  | <a class="main-nav-link" href="../../../install/index.html">Install</a> | 
|  | <a class="main-nav-link" href="../../../tutorials/index.html">Tutorials</a> | 
|  | <span id="dropdown-menu-position-anchor"> | 
|  | <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a> | 
|  | <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> | 
|  | <li><a class="main-nav-link" href="../../../gluon/index.html">About</a></li> | 
|  | <li><a class="main-nav-link" href="http://gluon.mxnet.io">Tutorials</a></li> | 
|  | </ul> | 
|  | </span> | 
|  | <span id="dropdown-menu-position-anchor"> | 
|  | <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a> | 
|  | <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> | 
|  | <li><a class="main-nav-link" href="../../../api/python/index.html">Python</a></li> | 
|  | <li><a class="main-nav-link" href="../../../api/scala/index.html">Scala</a></li> | 
|  | <li><a class="main-nav-link" href="../../../api/r/index.html">R</a></li> | 
|  | <li><a class="main-nav-link" href="../../../api/julia/index.html">Julia</a></li> | 
|  | <li><a class="main-nav-link" href="../../../api/c++/index.html">C++</a></li> | 
|  | <li><a class="main-nav-link" href="../../../api/perl/index.html">Perl</a></li> | 
|  | </ul> | 
|  | </span> | 
|  | <span id="dropdown-menu-position-anchor-docs"> | 
|  | <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a> | 
|  | <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs"> | 
|  | <li><a class="main-nav-link" href="../../../faq/index.html">FAQ</a></li> | 
|  | <li><a class="main-nav-link" href="../../../architecture/index.html">Architecture</a></li> | 
|  | <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example">Examples</a></li> | 
|  | <li><a class="main-nav-link" href="../../../model_zoo/index.html">Model Zoo</a></li> | 
|  | </ul> | 
|  | </span> | 
|  | <a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a> | 
|  | <span id="dropdown-menu-position-anchor-community"> | 
|  | <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a> | 
|  | <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community"> | 
|  | <li><a class="main-nav-link" href="../../../community/index.html">Community</a></li> | 
|  | <li><a class="main-nav-link" href="../../../community/contribute.html">Contribute</a></li> | 
|  | <li><a class="main-nav-link" href="../../../community/powered_by.html">Powered By</a></li> | 
|  | </ul> | 
|  | </span> | 
|  | <a class="main-nav-link" href="http://discuss.mxnet.io">Discuss</a> | 
|  | <span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">Versions(1.0.0)<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/>1.1.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/1.0.0/index.html>1.0.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></span></nav> | 
|  | <script> function getRootPath(){ return "../../../" } </script> | 
|  | <div class="burgerIcon dropdown"> | 
|  | <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a> | 
|  | <ul class="dropdown-menu" id="burgerMenu"> | 
|  | <li><a href="../../../install/index.html">Install</a></li> | 
|  | <li><a class="main-nav-link" href="../../../tutorials/index.html">Tutorials</a></li> | 
|  | <li class="dropdown-submenu"> | 
|  | <a href="#" tabindex="-1">Community</a> | 
|  | <ul class="dropdown-menu"> | 
|  | <li><a href="../../../community/index.html" tabindex="-1">Community</a></li> | 
|  | <li><a href="../../../community/contribute.html" tabindex="-1">Contribute</a></li> | 
|  | <li><a href="../../../community/powered_by.html" tabindex="-1">Powered By</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | <li class="dropdown-submenu"> | 
|  | <a href="#" tabindex="-1">API</a> | 
|  | <ul class="dropdown-menu"> | 
|  | <li><a href="../../../api/python/index.html" tabindex="-1">Python</a> | 
|  | </li> | 
|  | <li><a href="../../../api/scala/index.html" tabindex="-1">Scala</a> | 
|  | </li> | 
|  | <li><a href="../../../api/r/index.html" tabindex="-1">R</a> | 
|  | </li> | 
|  | <li><a href="../../../api/julia/index.html" tabindex="-1">Julia</a> | 
|  | </li> | 
|  | <li><a href="../../../api/c++/index.html" tabindex="-1">C++</a> | 
|  | </li> | 
|  | <li><a href="../../../api/perl/index.html" tabindex="-1">Perl</a> | 
|  | </li> | 
|  | </ul> | 
|  | </li> | 
|  | <li class="dropdown-submenu"> | 
|  | <a href="#" tabindex="-1">Docs</a> | 
|  | <ul class="dropdown-menu"> | 
|  | <li><a href="../../../tutorials/index.html" tabindex="-1">Tutorials</a></li> | 
|  | <li><a href="../../../faq/index.html" tabindex="-1">FAQ</a></li> | 
|  | <li><a href="../../../architecture/index.html" tabindex="-1">Architecture</a></li> | 
|  | <li><a href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example" tabindex="-1">Examples</a></li> | 
|  | <li><a href="../../../model_zoo/index.html" tabindex="-1">Model Zoo</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | <li><a href="../../../architecture/index.html">Architecture</a></li> | 
|  | <li><a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a></li> | 
|  | <li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">Versions(1.0.0)</a><ul class="dropdown-menu"><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/>1.1.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/1.0.0/index.html>1.0.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></li></ul> | 
|  | </div> | 
|  | <div class="plusIcon dropdown"> | 
|  | <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a> | 
|  | <ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul> | 
|  | </div> | 
|  | <div id="search-input-wrap"> | 
|  | <form action="../../../search.html" autocomplete="off" class="" method="get" role="search"> | 
|  | <div class="form-group inner-addon left-addon"> | 
|  | <i class="glyphicon glyphicon-search"></i> | 
|  | <input class="form-control" name="q" placeholder="Search" type="text"/> | 
|  | </div> | 
|  | <input name="check_keywords" type="hidden" value="yes"/> | 
|  | <input name="area" type="hidden" value="default"> | 
|  | </input></form> | 
|  | <div id="search-preview"></div> | 
|  | </div> | 
|  | <div id="searchIcon"> | 
|  | <span aria-hidden="true" class="glyphicon glyphicon-search"></span> | 
|  | </div> | 
|  | <!-- <div id="lang-select-wrap"> --> | 
|  | <!--   <label id="lang-select-label"> --> | 
|  | <!--     <\!-- <i class="fa fa-globe"></i> -\-> --> | 
|  | <!--     <span></span> --> | 
|  | <!--   </label> --> | 
|  | <!--   <select id="lang-select"> --> | 
|  | <!--     <option value="en">Eng</option> --> | 
|  | <!--     <option value="zh">中文</option> --> | 
|  | <!--   </select> --> | 
|  | <!-- </div> --> | 
|  | <!--     <a id="mobile-nav-toggle"> | 
|  | <span class="mobile-nav-toggle-bar"></span> | 
|  | <span class="mobile-nav-toggle-bar"></span> | 
|  | <span class="mobile-nav-toggle-bar"></span> | 
|  | </a> --> | 
|  | </div> | 
|  | </div> | 
|  | </div> | 
|  | <script type="text/javascript"> | 
|  | $('body').css('background', 'white'); | 
|  | </script> | 
|  | <div class="container"> | 
|  | <div class="row"> | 
|  | <div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation"> | 
|  | <div class="sphinxsidebarwrapper"> | 
|  | <ul class="current"> | 
|  | <li class="toctree-l1 current"><a class="reference internal" href="../index.html">Python Documents</a><ul class="current"> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#ndarray-api">NDArray API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#symbol-api">Symbol API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#module-api">Module API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#autograd-api">Autograd API</a></li> | 
|  | <li class="toctree-l2 current"><a class="reference internal" href="../index.html#gluon-api">Gluon API</a><ul class="current"> | 
|  | <li class="toctree-l3 current"><a class="reference internal" href="gluon.html">Gluon Package</a><ul class="current"> | 
|  | <li class="toctree-l4 current"><a class="reference internal" href="gluon.html#overview">Overview</a></li> | 
|  | <li class="toctree-l4"><a class="reference internal" href="gluon.html#parameter">Parameter</a></li> | 
|  | <li class="toctree-l4"><a class="reference internal" href="gluon.html#containers">Containers</a></li> | 
|  | <li class="toctree-l4"><a class="reference internal" href="gluon.html#trainer">Trainer</a></li> | 
|  | <li class="toctree-l4"><a class="reference internal" href="gluon.html#utilities">Utilities</a></li> | 
|  | <li class="toctree-l4"><a class="reference internal" href="gluon.html#api-reference">API Reference</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | <li class="toctree-l3"><a class="reference internal" href="nn.html">Gluon Neural Network Layers</a></li> | 
|  | <li class="toctree-l3"><a class="reference internal" href="rnn.html">Gluon Recurrent Neural Network API</a></li> | 
|  | <li class="toctree-l3 current"><a class="current reference internal" href="">Gluon Loss API</a><ul> | 
|  | <li class="toctree-l4"><a class="reference internal" href="#overview">Overview</a></li> | 
|  | <li class="toctree-l4"><a class="reference internal" href="#api-reference">API Reference</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | <li class="toctree-l3"><a class="reference internal" href="data.html">Gluon Data API</a></li> | 
|  | <li class="toctree-l3"><a class="reference internal" href="model_zoo.html">Gluon Model Zoo</a></li> | 
|  | <li class="toctree-l3"><a class="reference internal" href="contrib.html">Gluon Contrib API</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#kvstore-api">KVStore API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#io-api">IO API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#image-api">Image API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#optimization-api">Optimization API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#callback-api">Callback API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#metric-api">Metric API</a></li> | 
|  | <li class="toctree-l2"><a class="reference internal" href="../index.html#run-time-compilation-api">Run-Time Compilation API</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../r/index.html">R Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../julia/index.html">Julia Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../c++/index.html">C++ Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../scala/index.html">Scala Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../perl/index.html">Perl Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../../faq/index.html">HowTo Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../../architecture/index.html">System Documents</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../../tutorials/index.html">Tutorials</a></li> | 
|  | <li class="toctree-l1"><a class="reference internal" href="../../../community/index.html">Community</a></li> | 
|  | </ul> | 
|  | </div> | 
|  | </div> | 
|  | <div class="content"> | 
|  | <div class="page-tracker"></div> | 
|  | <div class="section" id="gluon-loss-api"> | 
|  | <span id="gluon-loss-api"></span><h1>Gluon Loss API<a class="headerlink" href="#gluon-loss-api" title="Permalink to this headline">¶</a></h1> | 
|  | <div class="section" id="overview"> | 
|  | <span id="overview"></span><h2>Overview<a class="headerlink" href="#overview" title="Permalink to this headline">¶</a></h2> | 
|  | <p>This document lists the loss API in Gluon:</p> | 
|  | <p>This package includes several commonly used loss functions in neural networks.</p> | 
|  | <table border="1" class="longtable docutils"> | 
|  | <colgroup> | 
|  | <col width="10%"/> | 
|  | <col width="90%"/> | 
|  | </colgroup> | 
|  | <tbody valign="top"> | 
|  | <tr class="row-odd"><td><a class="reference internal" href="#mxnet.gluon.loss.L2Loss" title="mxnet.gluon.loss.L2Loss"><code class="xref py py-obj docutils literal"><span class="pre">L2Loss</span></code></a></td> | 
|  | <td>Calculates the mean squared error between <cite>pred</cite> and <cite>label</cite>.</td> | 
|  | </tr> | 
|  | <tr class="row-even"><td><a class="reference internal" href="#mxnet.gluon.loss.L1Loss" title="mxnet.gluon.loss.L1Loss"><code class="xref py py-obj docutils literal"><span class="pre">L1Loss</span></code></a></td> | 
|  | <td>Calculates the mean absolute error between <cite>pred</cite> and <cite>label</cite>.</td> | 
|  | </tr> | 
|  | <tr class="row-odd"><td><a class="reference internal" href="#mxnet.gluon.loss.SigmoidBinaryCrossEntropyLoss" title="mxnet.gluon.loss.SigmoidBinaryCrossEntropyLoss"><code class="xref py py-obj docutils literal"><span class="pre">SigmoidBinaryCrossEntropyLoss</span></code></a></td> | 
|  | <td>The cross-entropy loss for binary classification.</td> | 
|  | </tr> | 
|  | <tr class="row-even"><td><a class="reference internal" href="#mxnet.gluon.loss.SoftmaxCrossEntropyLoss" title="mxnet.gluon.loss.SoftmaxCrossEntropyLoss"><code class="xref py py-obj docutils literal"><span class="pre">SoftmaxCrossEntropyLoss</span></code></a></td> | 
|  | <td>Computes the softmax cross entropy loss.</td> | 
|  | </tr> | 
|  | <tr class="row-odd"><td><a class="reference internal" href="#mxnet.gluon.loss.SigmoidBinaryCrossEntropyLoss" title="mxnet.gluon.loss.SigmoidBinaryCrossEntropyLoss"><code class="xref py py-obj docutils literal"><span class="pre">SigmoidBinaryCrossEntropyLoss</span></code></a></td> | 
|  | <td>The cross-entropy loss for binary classification.</td> | 
|  | </tr> | 
|  | <tr class="row-even"><td><a class="reference internal" href="#mxnet.gluon.loss.KLDivLoss" title="mxnet.gluon.loss.KLDivLoss"><code class="xref py py-obj docutils literal"><span class="pre">KLDivLoss</span></code></a></td> | 
|  | <td>The Kullback-Leibler divergence loss.</td> | 
|  | </tr> | 
|  | <tr class="row-odd"><td><a class="reference internal" href="#mxnet.gluon.loss.HuberLoss" title="mxnet.gluon.loss.HuberLoss"><code class="xref py py-obj docutils literal"><span class="pre">HuberLoss</span></code></a></td> | 
|  | <td>Calculates smoothed L1 loss that is equal to L1 loss if absolute error exceeds rho but is equal to L2 loss otherwise.</td> | 
|  | </tr> | 
|  | <tr class="row-even"><td><a class="reference internal" href="#mxnet.gluon.loss.HingeLoss" title="mxnet.gluon.loss.HingeLoss"><code class="xref py py-obj docutils literal"><span class="pre">HingeLoss</span></code></a></td> | 
|  | <td>Calculates the hinge loss function often used in SVMs:</td> | 
|  | </tr> | 
|  | <tr class="row-odd"><td><a class="reference internal" href="#mxnet.gluon.loss.SquaredHingeLoss" title="mxnet.gluon.loss.SquaredHingeLoss"><code class="xref py py-obj docutils literal"><span class="pre">SquaredHingeLoss</span></code></a></td> | 
|  | <td>Calculates the soft-margin loss function used in SVMs:</td> | 
|  | </tr> | 
|  | <tr class="row-even"><td><a class="reference internal" href="#mxnet.gluon.loss.LogisticLoss" title="mxnet.gluon.loss.LogisticLoss"><code class="xref py py-obj docutils literal"><span class="pre">LogisticLoss</span></code></a></td> | 
|  | <td>Calculates the logistic loss (for binary losses only):</td> | 
|  | </tr> | 
|  | <tr class="row-odd"><td><a class="reference internal" href="#mxnet.gluon.loss.TripletLoss" title="mxnet.gluon.loss.TripletLoss"><code class="xref py py-obj docutils literal"><span class="pre">TripletLoss</span></code></a></td> | 
|  | <td>Calculates triplet loss given three input tensors and a positive margin.</td> | 
|  | </tr> | 
|  | <tr class="row-even"><td><a class="reference internal" href="#mxnet.gluon.loss.CTCLoss" title="mxnet.gluon.loss.CTCLoss"><code class="xref py py-obj docutils literal"><span class="pre">CTCLoss</span></code></a></td> | 
|  | <td>Connectionist Temporal Classification Loss.</td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | </div> | 
|  | <div class="section" id="api-reference"> | 
|  | <span id="api-reference"></span><h2>API Reference<a class="headerlink" href="#api-reference" title="Permalink to this headline">¶</a></h2> | 
|  | <script src="../../_static/js/auto_module_index.js" type="text/javascript"></script><span class="target" id="module-mxnet.gluon.loss"></span><p>losses for training neural networks</p> | 
|  | <dl class="class"> | 
|  | <dt id="mxnet.gluon.loss.Loss"> | 
|  | <em class="property">class </em><code class="descclassname">mxnet.gluon.loss.</code><code class="descname">Loss</code><span class="sig-paren">(</span><em>weight</em>, <em>batch_axis</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/loss.html#Loss"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.loss.Loss" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Base class for loss.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>weight</strong> (<em>float or None</em>) – Global scalar weight for loss.</li> | 
|  | <li><strong>batch_axis</strong> (<em>int, default 0</em>) – The axis that represents mini-batch.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <dl class="method"> | 
|  | <dt id="mxnet.gluon.loss.Loss.hybrid_forward"> | 
|  | <code class="descname">hybrid_forward</code><span class="sig-paren">(</span><em>F</em>, <em>x</em>, <em>*args</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/loss.html#Loss.hybrid_forward"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.loss.Loss.hybrid_forward" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Overrides to construct symbolic graph for this <cite>Block</cite>.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>x</strong> (<em>Symbol or NDArray</em>) – The first input tensor.</li> | 
|  | <li><strong>*args</strong> – <p>Additional input tensors.</p> | 
|  | </li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | </dd></dl> | 
|  | </dd></dl> | 
|  | <dl class="class"> | 
|  | <dt id="mxnet.gluon.loss.L2Loss"> | 
|  | <em class="property">class </em><code class="descclassname">mxnet.gluon.loss.</code><code class="descname">L2Loss</code><span class="sig-paren">(</span><em>weight=1.0</em>, <em>batch_axis=0</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/loss.html#L2Loss"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.loss.L2Loss" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Calculates the mean squared error between <cite>pred</cite> and <cite>label</cite>.</p> | 
|  | <div class="math"> | 
|  | \[L = \frac{1}{2} \sum_i \vert {pred}_i - {label}_i \vert^2.\]</div> | 
|  | <p><cite>pred</cite> and <cite>label</cite> can have arbitrary shape as long as they have the same | 
|  | number of elements.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>weight</strong> (<em>float or None</em>) – Global scalar weight for loss.</li> | 
|  | <li><strong>batch_axis</strong> (<em>int, default 0</em>) – The axis that represents mini-batch.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <dl class="docutils"> | 
|  | <dt>Inputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>pred</strong>: prediction tensor with arbitrary shape</li> | 
|  | <li><strong>label</strong>: target tensor with the same size as pred.</li> | 
|  | <li><strong>sample_weight</strong>: element-wise weighting tensor. Must be broadcastable | 
|  | to the same shape as pred. For example, if pred has shape (64, 10) | 
|  | and you want to weigh each sample in the batch separately, | 
|  | sample_weight should have shape (64, 1).</li> | 
|  | </ul> | 
|  | </dd> | 
|  | <dt>Outputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>loss</strong>: loss tensor with shape (batch_size,). Dimenions other than | 
|  | batch_axis are averaged out.</li> | 
|  | </ul> | 
|  | </dd> | 
|  | </dl> | 
|  | </dd></dl> | 
|  | <dl class="class"> | 
|  | <dt id="mxnet.gluon.loss.L1Loss"> | 
|  | <em class="property">class </em><code class="descclassname">mxnet.gluon.loss.</code><code class="descname">L1Loss</code><span class="sig-paren">(</span><em>weight=None</em>, <em>batch_axis=0</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/loss.html#L1Loss"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.loss.L1Loss" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Calculates the mean absolute error between <cite>pred</cite> and <cite>label</cite>.</p> | 
|  | <div class="math"> | 
|  | \[L = \sum_i \vert {pred}_i - {label}_i \vert.\]</div> | 
|  | <p><cite>pred</cite> and <cite>label</cite> can have arbitrary shape as long as they have the same | 
|  | number of elements.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>weight</strong> (<em>float or None</em>) – Global scalar weight for loss.</li> | 
|  | <li><strong>batch_axis</strong> (<em>int, default 0</em>) – The axis that represents mini-batch.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <dl class="docutils"> | 
|  | <dt>Inputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>pred</strong>: prediction tensor with arbitrary shape</li> | 
|  | <li><strong>label</strong>: target tensor with the same size as pred.</li> | 
|  | <li><strong>sample_weight</strong>: element-wise weighting tensor. Must be broadcastable | 
|  | to the same shape as pred. For example, if pred has shape (64, 10) | 
|  | and you want to weigh each sample in the batch separately, | 
|  | sample_weight should have shape (64, 1).</li> | 
|  | </ul> | 
|  | </dd> | 
|  | <dt>Outputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>loss</strong>: loss tensor with shape (batch_size,). Dimenions other than | 
|  | batch_axis are averaged out.</li> | 
|  | </ul> | 
|  | </dd> | 
|  | </dl> | 
|  | </dd></dl> | 
|  | <dl class="class"> | 
|  | <dt id="mxnet.gluon.loss.SigmoidBinaryCrossEntropyLoss"> | 
|  | <em class="property">class </em><code class="descclassname">mxnet.gluon.loss.</code><code class="descname">SigmoidBinaryCrossEntropyLoss</code><span class="sig-paren">(</span><em>from_sigmoid=False</em>, <em>weight=None</em>, <em>batch_axis=0</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/loss.html#SigmoidBinaryCrossEntropyLoss"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.loss.SigmoidBinaryCrossEntropyLoss" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>The cross-entropy loss for binary classification. (alias: SigmoidBCELoss)</p> | 
|  | <p>BCE loss is useful when training logistic regression. If <cite>from_sigmoid</cite> | 
|  | is False (default), this loss computes:</p> | 
|  | <div class="math"> | 
|  | \[prob = \frac{1}{1 + \exp(-{pred})}\]\[L = - \sum_i {label}_i * \log({prob}_i) + | 
|  | (1 - {label}_i) * \log(1 - {prob}_i)\]</div> | 
|  | <p>If <cite>from_sigmoid</cite> is True, this loss computes:</p> | 
|  | <div class="math"> | 
|  | \[L = - \sum_i {label}_i * \log({pred}_i) + | 
|  | (1 - {label}_i) * \log(1 - {pred}_i)\]</div> | 
|  | <p><cite>pred</cite> and <cite>label</cite> can have arbitrary shape as long as they have the same | 
|  | number of elements.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>from_sigmoid</strong> (bool, default is <cite>False</cite>) – Whether the input is from the output of sigmoid. Set this to false will make | 
|  | the loss calculate sigmoid and BCE together, which is more numerically | 
|  | stable through log-sum-exp trick.</li> | 
|  | <li><strong>weight</strong> (<em>float or None</em>) – Global scalar weight for loss.</li> | 
|  | <li><strong>batch_axis</strong> (<em>int, default 0</em>) – The axis that represents mini-batch.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <dl class="docutils"> | 
|  | <dt>Inputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>pred</strong>: prediction tensor with arbitrary shape</li> | 
|  | <li><strong>label</strong>: target tensor with values in range <cite>[0, 1]</cite>. Must have the | 
|  | same size as <cite>pred</cite>.</li> | 
|  | <li><strong>sample_weight</strong>: element-wise weighting tensor. Must be broadcastable | 
|  | to the same shape as pred. For example, if pred has shape (64, 10) | 
|  | and you want to weigh each sample in the batch separately, | 
|  | sample_weight should have shape (64, 1).</li> | 
|  | </ul> | 
|  | </dd> | 
|  | <dt>Outputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>loss</strong>: loss tensor with shape (batch_size,). Dimenions other than | 
|  | batch_axis are averaged out.</li> | 
|  | </ul> | 
|  | </dd> | 
|  | </dl> | 
|  | </dd></dl> | 
|  | <dl class="attribute"> | 
|  | <dt id="mxnet.gluon.loss.SigmoidBCELoss"> | 
|  | <code class="descclassname">mxnet.gluon.loss.</code><code class="descname">SigmoidBCELoss</code><a class="headerlink" href="#mxnet.gluon.loss.SigmoidBCELoss" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>alias of <a class="reference internal" href="#mxnet.gluon.loss.SigmoidBinaryCrossEntropyLoss" title="mxnet.gluon.loss.SigmoidBinaryCrossEntropyLoss"><code class="xref py py-class docutils literal"><span class="pre">SigmoidBinaryCrossEntropyLoss</span></code></a></p> | 
|  | </dd></dl> | 
|  | <dl class="class"> | 
|  | <dt id="mxnet.gluon.loss.SoftmaxCrossEntropyLoss"> | 
|  | <em class="property">class </em><code class="descclassname">mxnet.gluon.loss.</code><code class="descname">SoftmaxCrossEntropyLoss</code><span class="sig-paren">(</span><em>axis=-1</em>, <em>sparse_label=True</em>, <em>from_logits=False</em>, <em>weight=None</em>, <em>batch_axis=0</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/loss.html#SoftmaxCrossEntropyLoss"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.loss.SoftmaxCrossEntropyLoss" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Computes the softmax cross entropy loss. (alias: SoftmaxCELoss)</p> | 
|  | <p>If <cite>sparse_label</cite> is <cite>True</cite> (default), label should contain integer | 
|  | category indicators:</p> | 
|  | <div class="math"> | 
|  | \[\DeclareMathOperator{softmax}{softmax}\]\[p = \softmax({pred})\]\[L = -\sum_i \log p_{i,{label}_i}\]</div> | 
|  | <p><cite>label</cite>‘s shape should be <cite>pred</cite>‘s shape with the <cite>axis</cite> dimension removed. | 
|  | i.e. for <cite>pred</cite> with shape (1,2,3,4) and <cite>axis = 2</cite>, <cite>label</cite>‘s shape should | 
|  | be (1,2,4).</p> | 
|  | <p>If <cite>sparse_label</cite> is <cite>False</cite>, <cite>label</cite> should contain probability distribution | 
|  | and <cite>label</cite>‘s shape should be the same with <cite>pred</cite>:</p> | 
|  | <div class="math"> | 
|  | \[p = \softmax({pred})\]\[L = -\sum_i \sum_j {label}_j \log p_{ij}\]</div> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>axis</strong> (<em>int, default -1</em>) – The axis to sum over when computing softmax and entropy.</li> | 
|  | <li><strong>sparse_label</strong> (<em>bool, default True</em>) – Whether label is an integer array instead of probability distribution.</li> | 
|  | <li><strong>from_logits</strong> (<em>bool, default False</em>) – Whether input is a log probability (usually from log_softmax) instead | 
|  | of unnormalized numbers.</li> | 
|  | <li><strong>weight</strong> (<em>float or None</em>) – Global scalar weight for loss.</li> | 
|  | <li><strong>batch_axis</strong> (<em>int, default 0</em>) – The axis that represents mini-batch.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <dl class="docutils"> | 
|  | <dt>Inputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>pred</strong>: the prediction tensor, where the <cite>batch_axis</cite> dimension | 
|  | ranges over batch size and <cite>axis</cite> dimension ranges over the number | 
|  | of classes.</li> | 
|  | <li><strong>label</strong>: the truth tensor. When <cite>sparse_label</cite> is True, <cite>label</cite>‘s | 
|  | shape should be <cite>pred</cite>‘s shape with the <cite>axis</cite> dimension removed. | 
|  | i.e. for <cite>pred</cite> with shape (1,2,3,4) and <cite>axis = 2</cite>, <cite>label</cite>‘s shape | 
|  | should be (1,2,4) and values should be integers between 0 and 2. If | 
|  | <cite>sparse_label</cite> is False, <cite>label</cite>‘s shape must be the same as <cite>pred</cite> | 
|  | and values should be floats in the range <cite>[0, 1]</cite>.</li> | 
|  | <li><strong>sample_weight</strong>: element-wise weighting tensor. Must be broadcastable | 
|  | to the same shape as label. For example, if label has shape (64, 10) | 
|  | and you want to weigh each sample in the batch separately, | 
|  | sample_weight should have shape (64, 1).</li> | 
|  | </ul> | 
|  | </dd> | 
|  | <dt>Outputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>loss</strong>: loss tensor with shape (batch_size,). Dimenions other than | 
|  | batch_axis are averaged out.</li> | 
|  | </ul> | 
|  | </dd> | 
|  | </dl> | 
|  | </dd></dl> | 
|  | <dl class="attribute"> | 
|  | <dt id="mxnet.gluon.loss.SoftmaxCELoss"> | 
|  | <code class="descclassname">mxnet.gluon.loss.</code><code class="descname">SoftmaxCELoss</code><a class="headerlink" href="#mxnet.gluon.loss.SoftmaxCELoss" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>alias of <a class="reference internal" href="#mxnet.gluon.loss.SoftmaxCrossEntropyLoss" title="mxnet.gluon.loss.SoftmaxCrossEntropyLoss"><code class="xref py py-class docutils literal"><span class="pre">SoftmaxCrossEntropyLoss</span></code></a></p> | 
|  | </dd></dl> | 
|  | <dl class="class"> | 
|  | <dt id="mxnet.gluon.loss.KLDivLoss"> | 
|  | <em class="property">class </em><code class="descclassname">mxnet.gluon.loss.</code><code class="descname">KLDivLoss</code><span class="sig-paren">(</span><em>from_logits=True</em>, <em>axis=-1</em>, <em>weight=None</em>, <em>batch_axis=0</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/loss.html#KLDivLoss"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.loss.KLDivLoss" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>The Kullback-Leibler divergence loss.</p> | 
|  | <p>KL divergence measures the distance between contiguous distributions. It | 
|  | can be used to minimize information loss when approximating a distribution. | 
|  | If <cite>from_logits</cite> is True (default), loss is defined as:</p> | 
|  | <div class="math"> | 
|  | \[L = \sum_i {label}_i * \big[\log({label}_i) - {pred}_i\big]\]</div> | 
|  | <p>If <cite>from_logits</cite> is False, loss is defined as:</p> | 
|  | <div class="math"> | 
|  | \[\DeclareMathOperator{softmax}{softmax}\]\[prob = \softmax({pred})\]\[L = \sum_i {label}_i * \big[\log({label}_i) - log({pred}_i)\big]\]</div> | 
|  | <p><cite>pred</cite> and <cite>label</cite> can have arbitrary shape as long as they have the same | 
|  | number of elements.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>from_logits</strong> (bool, default is <cite>True</cite>) – Whether the input is log probability (usually from log_softmax) instead | 
|  | of unnormalized numbers.</li> | 
|  | <li><strong>axis</strong> (<em>int, default -1</em>) – The dimension along with to compute softmax. Only used when <cite>from_logits</cite> | 
|  | is False.</li> | 
|  | <li><strong>weight</strong> (<em>float or None</em>) – Global scalar weight for loss.</li> | 
|  | <li><strong>batch_axis</strong> (<em>int, default 0</em>) – The axis that represents mini-batch.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <dl class="docutils"> | 
|  | <dt>Inputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>pred</strong>: prediction tensor with arbitrary shape. If <cite>from_logits</cite> is | 
|  | True, <cite>pred</cite> should be log probabilities. Otherwise, it should be | 
|  | unnormalized predictions, i.e. from a dense layer.</li> | 
|  | <li><strong>label</strong>: truth tensor with values in range <cite>(0, 1)</cite>. Must have | 
|  | the same size as <cite>pred</cite>.</li> | 
|  | <li><strong>sample_weight</strong>: element-wise weighting tensor. Must be broadcastable | 
|  | to the same shape as pred. For example, if pred has shape (64, 10) | 
|  | and you want to weigh each sample in the batch separately, | 
|  | sample_weight should have shape (64, 1).</li> | 
|  | </ul> | 
|  | </dd> | 
|  | <dt>Outputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>loss</strong>: loss tensor with shape (batch_size,). Dimenions other than | 
|  | batch_axis are averaged out.</li> | 
|  | </ul> | 
|  | </dd> | 
|  | </dl> | 
|  | <p class="rubric">References</p> | 
|  | <p><a class="reference external" href="https://en.wikipedia.org/wiki/Kullback-Leibler_divergence">Kullback-Leibler divergence</a></p> | 
|  | </dd></dl> | 
|  | <dl class="class"> | 
|  | <dt id="mxnet.gluon.loss.CTCLoss"> | 
|  | <em class="property">class </em><code class="descclassname">mxnet.gluon.loss.</code><code class="descname">CTCLoss</code><span class="sig-paren">(</span><em>layout='NTC'</em>, <em>label_layout='NT'</em>, <em>weight=None</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/loss.html#CTCLoss"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.loss.CTCLoss" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Connectionist Temporal Classification Loss.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>layout</strong> (<em>str, default 'NTC'</em>) – Layout of prediction tensor. ‘N’, ‘T’, ‘C’ stands for batch size, | 
|  | sequence length, and alphabet_size respectively.</li> | 
|  | <li><strong>label_layout</strong> (<em>str, default 'NT'</em>) – Layout of the labels. ‘N’, ‘T’ stands for batch size, and sequence | 
|  | length respectively.</li> | 
|  | <li><strong>weight</strong> (<em>float or None</em>) – Global scalar weight for loss.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <dl class="docutils"> | 
|  | <dt>Inputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>pred</strong>: unnormalized prediction tensor (before softmax). | 
|  | Its shape depends on <cite>layout</cite>. If <cite>layout</cite> is ‘TNC’, pred | 
|  | should have shape <cite>(sequence_length, batch_size, alphabet_size)</cite>. | 
|  | Note that in the last dimension, index <cite>alphabet_size-1</cite> is reserved | 
|  | for internal use as blank label. So <cite>alphabet_size</cite> is one plus the | 
|  | actual alphabet size.</li> | 
|  | <li><strong>label</strong>: zero-based label tensor. Its shape depends on <cite>label_layout</cite>. | 
|  | If <cite>label_layout</cite> is ‘TN’, <cite>label</cite> should have shape | 
|  | <cite>(label_sequence_length, batch_size)</cite>.</li> | 
|  | <li><strong>pred_lengths</strong>: optional (default None), used for specifying the | 
|  | length of each entry when different <cite>pred</cite> entries in the same batch | 
|  | have different lengths. <cite>pred_lengths</cite> should have shape <cite>(batch_size,)</cite>.</li> | 
|  | <li><strong>label_lengths</strong>: optional (default None), used for specifying the | 
|  | length of each entry when different <cite>label</cite> entries in the same batch | 
|  | have different lengths. <cite>label_lengths</cite> should have shape <cite>(batch_size,)</cite>.</li> | 
|  | </ul> | 
|  | </dd> | 
|  | <dt>Outputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>loss</strong>: output loss has shape <cite>(batch_size,)</cite>.</li> | 
|  | </ul> | 
|  | </dd> | 
|  | </dl> | 
|  | <p><strong>Example</strong>: suppose the vocabulary is <cite>[a, b, c]</cite>, and in one batch we | 
|  | have three sequences ‘ba’, ‘cbb’, and ‘abac’. We can index the labels as | 
|  | <cite>{‘a’: 0, ‘b’: 1, ‘c’: 2, blank: 3}</cite>. Then <cite>alphabet_size</cite> should be 4, | 
|  | where label 3 is reserved for internal use by <cite>CTCLoss</cite>. We then need to | 
|  | pad each sequence with <cite>-1</cite> to make a rectangular <cite>label</cite> tensor:</p> | 
|  | <div class="highlight-python"><div class="highlight"><pre><span></span><span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">],</span> | 
|  | <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span>  <span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">],</span> | 
|  | <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span>  <span class="mi">0</span><span class="p">,</span>  <span class="mi">2</span><span class="p">]]</span> | 
|  | </pre></div> | 
|  | </div> | 
|  | <p class="rubric">References</p> | 
|  | <p><a class="reference external" href="http://www.cs.toronto.edu/~graves/icml_2006.pdf">Connectionist Temporal Classification: Labelling Unsegmented | 
|  | Sequence Data with Recurrent Neural Networks</a></p> | 
|  | </dd></dl> | 
|  | <dl class="class"> | 
|  | <dt id="mxnet.gluon.loss.HuberLoss"> | 
|  | <em class="property">class </em><code class="descclassname">mxnet.gluon.loss.</code><code class="descname">HuberLoss</code><span class="sig-paren">(</span><em>rho=1</em>, <em>weight=None</em>, <em>batch_axis=0</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/loss.html#HuberLoss"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.loss.HuberLoss" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Calculates smoothed L1 loss that is equal to L1 loss if absolute error | 
|  | exceeds rho but is equal to L2 loss otherwise. Also called SmoothedL1 loss.</p> | 
|  | <div class="math"> | 
|  | \[\begin{split}L = \sum_i \begin{cases} \frac{1}{2 {rho}} ({pred}_i - {label}_i)^2 & | 
|  | \text{ if } |{pred}_i - {label}_i| < {rho} \\ | 
|  | |{pred}_i - {label}_i| - \frac{{rho}}{2} & | 
|  | \text{ otherwise } | 
|  | \end{cases}\end{split}\]</div> | 
|  | <p><cite>pred</cite> and <cite>label</cite> can have arbitrary shape as long as they have the same | 
|  | number of elements.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>rho</strong> (<em>float, default 1</em>) – Threshold for trimmed mean estimator.</li> | 
|  | <li><strong>weight</strong> (<em>float or None</em>) – Global scalar weight for loss.</li> | 
|  | <li><strong>batch_axis</strong> (<em>int, default 0</em>) – The axis that represents mini-batch.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <dl class="docutils"> | 
|  | <dt>Inputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>pred</strong>: prediction tensor with arbitrary shape</li> | 
|  | <li><strong>label</strong>: target tensor with the same size as pred.</li> | 
|  | <li><strong>sample_weight</strong>: element-wise weighting tensor. Must be broadcastable | 
|  | to the same shape as pred. For example, if pred has shape (64, 10) | 
|  | and you want to weigh each sample in the batch separately, | 
|  | sample_weight should have shape (64, 1).</li> | 
|  | </ul> | 
|  | </dd> | 
|  | <dt>Outputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>loss</strong>: loss tensor with shape (batch_size,). Dimenions other than | 
|  | batch_axis are averaged out.</li> | 
|  | </ul> | 
|  | </dd> | 
|  | </dl> | 
|  | </dd></dl> | 
|  | <dl class="class"> | 
|  | <dt id="mxnet.gluon.loss.HingeLoss"> | 
|  | <em class="property">class </em><code class="descclassname">mxnet.gluon.loss.</code><code class="descname">HingeLoss</code><span class="sig-paren">(</span><em>margin=1</em>, <em>weight=None</em>, <em>batch_axis=0</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/loss.html#HingeLoss"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.loss.HingeLoss" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Calculates the hinge loss function often used in SVMs:</p> | 
|  | <div class="math"> | 
|  | \[L = \sum_i max(0, {margin} - {pred}_i \cdot {label}_i)\]</div> | 
|  | <p>where <cite>pred</cite> is the classifier prediction and <cite>label</cite> is the target tensor | 
|  | containing values -1 or 1. <cite>pred</cite> and <cite>label</cite> must have the same number of | 
|  | elements.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>margin</strong> (<em>float</em>) – The margin in hinge loss. Defaults to 1.0</li> | 
|  | <li><strong>weight</strong> (<em>float or None</em>) – Global scalar weight for loss.</li> | 
|  | <li><strong>batch_axis</strong> (<em>int, default 0</em>) – The axis that represents mini-batch.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <dl class="docutils"> | 
|  | <dt>Inputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>pred</strong>: prediction tensor with arbitrary shape.</li> | 
|  | <li><strong>label</strong>: truth tensor with values -1 or 1. Must have the same size | 
|  | as pred.</li> | 
|  | <li><strong>sample_weight</strong>: element-wise weighting tensor. Must be broadcastable | 
|  | to the same shape as pred. For example, if pred has shape (64, 10) | 
|  | and you want to weigh each sample in the batch separately, | 
|  | sample_weight should have shape (64, 1).</li> | 
|  | </ul> | 
|  | </dd> | 
|  | <dt>Outputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>loss</strong>: loss tensor with shape (batch_size,). Dimenions other than | 
|  | batch_axis are averaged out.</li> | 
|  | </ul> | 
|  | </dd> | 
|  | </dl> | 
|  | </dd></dl> | 
|  | <dl class="class"> | 
|  | <dt id="mxnet.gluon.loss.SquaredHingeLoss"> | 
|  | <em class="property">class </em><code class="descclassname">mxnet.gluon.loss.</code><code class="descname">SquaredHingeLoss</code><span class="sig-paren">(</span><em>margin=1</em>, <em>weight=None</em>, <em>batch_axis=0</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/loss.html#SquaredHingeLoss"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.loss.SquaredHingeLoss" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Calculates the soft-margin loss function used in SVMs:</p> | 
|  | <div class="math"> | 
|  | \[L = \sum_i max(0, {margin} - {pred}_i \cdot {label}_i)^2\]</div> | 
|  | <p>where <cite>pred</cite> is the classifier prediction and <cite>label</cite> is the target tensor | 
|  | containing values -1 or 1. <cite>pred</cite> and <cite>label</cite> can have arbitrary shape as | 
|  | long as they have the same number of elements.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>margin</strong> (<em>float</em>) – The margin in hinge loss. Defaults to 1.0</li> | 
|  | <li><strong>weight</strong> (<em>float or None</em>) – Global scalar weight for loss.</li> | 
|  | <li><strong>batch_axis</strong> (<em>int, default 0</em>) – The axis that represents mini-batch.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <dl class="docutils"> | 
|  | <dt>Inputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>pred</strong>: prediction tensor with arbitrary shape</li> | 
|  | <li><strong>label</strong>: truth tensor with values -1 or 1. Must have the same size | 
|  | as pred.</li> | 
|  | <li><strong>sample_weight</strong>: element-wise weighting tensor. Must be broadcastable | 
|  | to the same shape as pred. For example, if pred has shape (64, 10) | 
|  | and you want to weigh each sample in the batch separately, | 
|  | sample_weight should have shape (64, 1).</li> | 
|  | </ul> | 
|  | </dd> | 
|  | <dt>Outputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>loss</strong>: loss tensor with shape (batch_size,). Dimenions other than | 
|  | batch_axis are averaged out.</li> | 
|  | </ul> | 
|  | </dd> | 
|  | </dl> | 
|  | </dd></dl> | 
|  | <dl class="class"> | 
|  | <dt id="mxnet.gluon.loss.LogisticLoss"> | 
|  | <em class="property">class </em><code class="descclassname">mxnet.gluon.loss.</code><code class="descname">LogisticLoss</code><span class="sig-paren">(</span><em>weight=None</em>, <em>batch_axis=0</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/loss.html#LogisticLoss"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.loss.LogisticLoss" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Calculates the logistic loss (for binary losses only):</p> | 
|  | <div class="math"> | 
|  | \[L = \sum_i \log(1 + \exp(- {pred}_i \cdot {label}_i))\]</div> | 
|  | <p>where <cite>pred</cite> is the classifier prediction and <cite>label</cite> is the target tensor | 
|  | containing values -1 or 1. <cite>pred</cite> and <cite>label</cite> can have arbitrary shape as | 
|  | long as they have the same number of elements.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>weight</strong> (<em>float or None</em>) – Global scalar weight for loss.</li> | 
|  | <li><strong>batch_axis</strong> (<em>int, default 0</em>) – The axis that represents mini-batch.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <dl class="docutils"> | 
|  | <dt>Inputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>pred</strong>: prediction tensor with arbitrary shape.</li> | 
|  | <li><strong>label</strong>: truth tensor with values -1 or 1. Must have the same size | 
|  | as pred.</li> | 
|  | <li><strong>sample_weight</strong>: element-wise weighting tensor. Must be broadcastable | 
|  | to the same shape as pred. For example, if pred has shape (64, 10) | 
|  | and you want to weigh each sample in the batch separately, | 
|  | sample_weight should have shape (64, 1).</li> | 
|  | </ul> | 
|  | </dd> | 
|  | <dt>Outputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>loss</strong>: loss tensor with shape (batch_size,). Dimenions other than | 
|  | batch_axis are averaged out.</li> | 
|  | </ul> | 
|  | </dd> | 
|  | </dl> | 
|  | </dd></dl> | 
|  | <dl class="class"> | 
|  | <dt id="mxnet.gluon.loss.TripletLoss"> | 
|  | <em class="property">class </em><code class="descclassname">mxnet.gluon.loss.</code><code class="descname">TripletLoss</code><span class="sig-paren">(</span><em>margin=1</em>, <em>weight=None</em>, <em>batch_axis=0</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../../_modules/mxnet/gluon/loss.html#TripletLoss"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#mxnet.gluon.loss.TripletLoss" title="Permalink to this definition">¶</a></dt> | 
|  | <dd><p>Calculates triplet loss given three input tensors and a positive margin. | 
|  | Triplet loss measures the relative similarity between prediction, a positive | 
|  | example and a negative example:</p> | 
|  | <div class="math"> | 
|  | \[L = \sum_i \max(\Vert {pred}_i - {pos_i} \Vert_2^2 - | 
|  | \Vert {pred}_i - {neg_i} \Vert_2^2 + {margin}, 0)\]</div> | 
|  | <p><cite>pred</cite>, <cite>positive</cite> and <cite>negative</cite> can have arbitrary shape as long as they | 
|  | have the same number of elements.</p> | 
|  | <table class="docutils field-list" frame="void" rules="none"> | 
|  | <col class="field-name"/> | 
|  | <col class="field-body"/> | 
|  | <tbody valign="top"> | 
|  | <tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple"> | 
|  | <li><strong>margin</strong> (<em>float</em>) – Margin of separation between correct and incorrect pair.</li> | 
|  | <li><strong>weight</strong> (<em>float or None</em>) – Global scalar weight for loss.</li> | 
|  | <li><strong>batch_axis</strong> (<em>int, default 0</em>) – The axis that represents mini-batch.</li> | 
|  | </ul> | 
|  | </td> | 
|  | </tr> | 
|  | </tbody> | 
|  | </table> | 
|  | <dl class="docutils"> | 
|  | <dt>Inputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>pred</strong>: prediction tensor with arbitrary shape</li> | 
|  | <li><strong>positive</strong>: positive example tensor with arbitrary shape. Must have | 
|  | the same size as pred.</li> | 
|  | <li><strong>negative</strong>: negative example tensor with arbitrary shape Must have | 
|  | the same size as pred.</li> | 
|  | </ul> | 
|  | </dd> | 
|  | <dt>Outputs:</dt> | 
|  | <dd><ul class="first last simple"> | 
|  | <li><strong>loss</strong>: loss tensor with shape (batch_size,).</li> | 
|  | </ul> | 
|  | </dd> | 
|  | </dl> | 
|  | </dd></dl> | 
|  | <script>auto_index("api-reference");</script></div> | 
|  | </div> | 
|  | </div> | 
|  | </div> | 
|  | <div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation"> | 
|  | <div class="sphinxsidebarwrapper"> | 
|  | <h3><a href="../../../index.html">Table Of Contents</a></h3> | 
|  | <ul> | 
|  | <li><a class="reference internal" href="#">Gluon Loss API</a><ul> | 
|  | <li><a class="reference internal" href="#overview">Overview</a></li> | 
|  | <li><a class="reference internal" href="#api-reference">API Reference</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | </ul> | 
|  | </div> | 
|  | </div> | 
|  | </div><div class="footer"> | 
|  | <div class="section-disclaimer"> | 
|  | <div class="container"> | 
|  | <div> | 
|  | <img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/> | 
|  | <p> | 
|  | Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF. | 
|  | </p> | 
|  | <p> | 
|  | "Copyright © 2017, The Apache Software Foundation | 
|  | Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation." | 
|  | </p> | 
|  | </div> | 
|  | </div> | 
|  | </div> | 
|  | </div> <!-- pagename != index --> | 
|  | </div> | 
|  | <script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> | 
|  | <script src="../../../_static/js/sidebar.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/js/search.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/js/navbar.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/js/clipboard.min.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/js/copycode.js" type="text/javascript"></script> | 
|  | <script src="../../../_static/js/page.js" type="text/javascript"></script> | 
|  | <script type="text/javascript"> | 
|  | $('body').ready(function () { | 
|  | $('body').css('visibility', 'visible'); | 
|  | }); | 
|  | </script> | 
|  | </body> | 
|  | </html> |