| Callback Function |
| ====================================== |
| |
| This tutorial provides guidelines for using and writing callback functions, |
| which can very useful in model training. |
| |
| Model Training Example |
| ---------- |
| |
| Let's begin with a small example. We can build and train a model with the following code: |
| |
| |
| ```r |
| library(mxnet) |
| data(BostonHousing, package="mlbench") |
| train.ind = seq(1, 506, 3) |
| train.x = data.matrix(BostonHousing[train.ind, -14]) |
| train.y = BostonHousing[train.ind, 14] |
| test.x = data.matrix(BostonHousing[-train.ind, -14]) |
| test.y = BostonHousing[-train.ind, 14] |
| data <- mx.symbol.Variable("data") |
| fc1 <- mx.symbol.FullyConnected(data, num_hidden=1) |
| lro <- mx.symbol.LinearRegressionOutput(fc1) |
| mx.set.seed(0) |
| model <- mx.model.FeedForward.create( |
| lro, X=train.x, y=train.y, |
| eval.data=list(data=test.x, label=test.y), |
| ctx=mx.cpu(), num.round=10, array.batch.size=20, |
| learning.rate=2e-6, momentum=0.9, eval.metric=mx.metric.rmse) |
| ``` |
| |
| ``` |
| ## Auto detect layout of input matrix, use row major.. |
| ## Start training with 1 devices |
| ## [1] Train-rmse=16.063282524034 |
| ## [1] Validation-rmse=10.1766446093622 |
| ## [2] Train-rmse=12.2792375712573 |
| ## [2] Validation-rmse=12.4331776190813 |
| ## [3] Train-rmse=11.1984634005885 |
| ## [3] Validation-rmse=10.3303041888193 |
| ## [4] Train-rmse=10.2645236892904 |
| ## [4] Validation-rmse=8.42760407903415 |
| ## [5] Train-rmse=9.49711005504284 |
| ## [5] Validation-rmse=8.44557808483234 |
| ## [6] Train-rmse=9.07733734175182 |
| ## [6] Validation-rmse=8.33225500266177 |
| ## [7] Train-rmse=9.07884450847991 |
| ## [7] Validation-rmse=8.38827833418459 |
| ## [8] Train-rmse=9.10463850277417 |
| ## [8] Validation-rmse=8.37394452365264 |
| ## [9] Train-rmse=9.03977049028532 |
| ## [9] Validation-rmse=8.25927979725672 |
| ## [10] Train-rmse=8.96870685004475 |
| ## [10] Validation-rmse=8.19509291481822 |
| ``` |
| |
| We also provide two optional parameters, `batch.end.callback` and `epoch.end.callback`, which can provide great flexibility in model training. |
| |
| How to Use Callback Functions |
| --------- |
| |
| This package provides two callback functions: |
| |
| - `mx.callback.save.checkpoint` saves a checkpoint to files during each period iteration. |
| |
| ```r |
| model <- mx.model.FeedForward.create( |
| lro, X=train.x, y=train.y, |
| eval.data=list(data=test.x, label=test.y), |
| ctx=mx.cpu(), num.round=10, array.batch.size=20, |
| learning.rate=2e-6, momentum=0.9, eval.metric=mx.metric.rmse, |
| epoch.end.callback = mx.callback.save.checkpoint("boston")) |
| ``` |
| |
| ``` |
| ## Auto detect layout of input matrix, use row major.. |
| ## Start training with 1 devices |
| ## [1] Train-rmse=19.1621424021617 |
| ## [1] Validation-rmse=20.721515592165 |
| ## Model checkpoint saved to boston-0001.params |
| ## [2] Train-rmse=13.5127391952367 |
| ## [2] Validation-rmse=14.1822123675007 |
| ## Model checkpoint saved to boston-0002.params |
| ``` |
| |
| |
| - `mx.callback.log.train.metric` logs a training metric each period. You can use it either as a `batch.end.callback` or an |
| `epoch.end.callback`. |
| |
| |
| ```r |
| model <- mx.model.FeedForward.create( |
| lro, X=train.x, y=train.y, |
| eval.data=list(data=test.x, label=test.y), |
| ctx=mx.cpu(), num.round=10, array.batch.size=20, |
| learning.rate=2e-6, momentum=0.9, eval.metric=mx.metric.rmse, |
| batch.end.callback = mx.callback.log.train.metric(5)) |
| ``` |
| |
| ``` |
| ## Auto detect layout of input matrix, use row major.. |
| ## Start training with 1 devices |
| ## Batch [5] Train-rmse=17.6514558545416 |
| ## [1] Train-rmse=15.2879610219001 |
| ## [1] Validation-rmse=12.3332062820921 |
| ## Batch [5] Train-rmse=11.939392828565 |
| ## [2] Train-rmse=11.4382242547217 |
| ## [2] Validation-rmse=9.91176550103181 |
| ............ |
| ``` |
| |
| You also can save the training and evaluation errors for later use by passing a reference class: |
| |
| |
| ```r |
| logger <- mx.metric.logger$new() |
| model <- mx.model.FeedForward.create( |
| lro, X=train.x, y=train.y, |
| eval.data=list(data=test.x, label=test.y), |
| ctx=mx.cpu(), num.round=10, array.batch.size=20, |
| learning.rate=2e-6, momentum=0.9, eval.metric=mx.metric.rmse, |
| epoch.end.callback = mx.callback.log.train.metric(5, logger)) |
| ``` |
| |
| ``` |
| ## Auto detect layout of input matrix, use row major.. |
| ## Start training with 1 devices |
| ## [1] Train-rmse=19.1083228733256 |
| ## [1] Validation-rmse=12.7150687428974 |
| ## [2] Train-rmse=15.7684378116157 |
| ## [2] Validation-rmse=14.8105319420491 |
| ............ |
| ``` |
| |
| ```r |
| head(logger$train) |
| ``` |
| |
| ``` |
| ## [1] 19.108323 15.768438 13.531470 11.386050 9.555477 9.351324 |
| ``` |
| |
| ```r |
| head(logger$eval) |
| ``` |
| |
| ``` |
| ## [1] 12.715069 14.810532 15.840361 10.898733 9.349706 9.363087 |
| ``` |
| |
| How to Write Your Own Callback Functions |
| ---------- |
| |
| You can find the source code for the two callback functions on [GitHub](https://github.com/dmlc/mxnet/blob/master/R-package/R/callback.R) and use it as a template: |
| |
| Basically, all callback functions follow the following structure: |
| |
| |
| ```r |
| mx.callback.fun <- function() { |
| function(iteration, nbatch, env) { |
| } |
| } |
| ``` |
| |
| The following `mx.callback.save.checkpoint` function is stateless. It gets the model from the environment and saves it:. |
| |
| |
| ```r |
| mx.callback.save.checkpoint <- function(prefix, period=1) { |
| function(iteration, nbatch, env) { |
| if (iteration %% period == 0) { |
| mx.model.save(env$model, prefix, iteration) |
| cat(sprintf("Model checkpoint saved to %s-%04d.params\n", prefix, iteration)) |
| } |
| return(TRUE) |
| } |
| } |
| ``` |
| |
| The `mx.callback.log.train.metric` is a little more complex. It holds a reference class and updates it during the training |
| process: |
| |
| |
| ```r |
| mx.callback.log.train.metric <- function(period, logger=NULL) { |
| function(iteration, nbatch, env) { |
| if (nbatch %% period == 0 && !is.null(env$metric)) { |
| result <- env$metric$get(env$train.metric) |
| if (nbatch != 0) |
| cat(paste0("Batch [", nbatch, "] Train-", result$name, "=", result$value, "\n")) |
| if (!is.null(logger)) { |
| if (class(logger) != "mx.metric.logger") { |
| stop("Invalid mx.metric.logger.") |
| } |
| logger$train <- c(logger$train, result$value) |
| if (!is.null(env$eval.metric)) { |
| result <- env$metric$get(env$eval.metric) |
| if (nbatch != 0) |
| cat(paste0("Batch [", nbatch, "] Validation-", result$name, "=", result$value, "\n")) |
| logger$eval <- c(logger$eval, result$value) |
| } |
| } |
| } |
| return(TRUE) |
| } |
| } |
| ``` |
| |
| Now you might be curious why both callback functions `return(TRUE)`. |
| |
| Can we `return(FALSE)`? |
| |
| Yes! You can stop the training early with `return(FALSE)`. See the following examples. |
| |
| |
| ```r |
| mx.callback.early.stop <- function(eval.metric) { |
| function(iteration, nbatch, env) { |
| if (!is.null(env$metric)) { |
| if (!is.null(eval.metric)) { |
| result <- env$metric$get(env$eval.metric) |
| if (result$value < eval.metric) { |
| return(FALSE) |
| } |
| } |
| } |
| return(TRUE) |
| } |
| } |
| model <- mx.model.FeedForward.create( |
| lro, X=train.x, y=train.y, |
| eval.data=list(data=test.x, label=test.y), |
| ctx=mx.cpu(), num.round=10, array.batch.size=20, |
| learning.rate=2e-6, momentum=0.9, eval.metric=mx.metric.rmse, |
| epoch.end.callback = mx.callback.early.stop(10)) |
| ``` |
| |
| ``` |
| ## Auto detect layout of input matrix, use row major.. |
| ## Start training with 1 devices |
| ## [1] Train-rmse=18.5897984387033 |
| ## [1] Validation-rmse=13.5555213820571 |
| ## [2] Train-rmse=12.5867564040256 |
| ## [2] Validation-rmse=9.76304967080928 |
| ``` |
| |
| When the validation metric dips below the threshold we set, the training process stops. |
| |
| ## Next Steps |
| * [Neural Networks with MXNet in Five Minutes](http://mxnet.io/tutorials/r/fiveMinutesNeuralNetwork.html) |
| * [Classify Real-World Images with a Pretrained Model](http://mxnet.io/tutorials/r/classifyRealImageWithPretrainedModel.html) |
| * [Handwritten Digits Classification Competition](http://mxnet.io/tutorials/r/mnistCompetition.html) |
| * [Character Language Model Using RNN](http://mxnet.io/tutorials/r/charRnnModel.html) |