blob: 4212f94644e3e4baf412c41a0d56316248f67e5d [file] [log] [blame]
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="IE=edge" http-equiv="X-UA-Compatible"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<title>mxnet.executor_manager — mxnet documentation</title>
<link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/>
<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/>
<link href="../../_static/basic.css" rel="stylesheet" type="text/css"/>
<link href="../../_static/pygments.css" rel="stylesheet" type="text/css"/>
<link href="../../_static/mxnet.css" rel="stylesheet" type="text/css">
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../',
VERSION: '',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: ''
};
</script>
<script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script>
<script src="../../_static/underscore.js" type="text/javascript"></script>
<script src="../../_static/searchtools_custom.js" type="text/javascript"></script>
<script src="../../_static/doctools.js" type="text/javascript"></script>
<script src="../../_static/selectlang.js" type="text/javascript"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
<script type="text/javascript"> jQuery(function() { Search.loadIndex("/searchindex.js"); Search.init();}); </script>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new
Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-96378503-1', 'auto');
ga('send', 'pageview');
</script>
<!-- -->
<!-- <script type="text/javascript" src="../../_static/jquery.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="../../_static/underscore.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="../../_static/doctools.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> -->
<!-- -->
<link href="../index.html" rel="up" title="Module code"/>
<link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png">
</link></link></head>
<body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document">
<div class="content-block"><div class="navbar navbar-fixed-top">
<div class="container" id="navContainer">
<div class="innder" id="header-inner">
<h1 id="logo-wrap">
<a href="../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a>
</h1>
<nav class="nav-bar" id="main-nav">
<a class="main-nav-link" href="../../install/index.html">Install</a>
<a class="main-nav-link" href="../../tutorials/index.html">Tutorials</a>
<span id="dropdown-menu-position-anchor">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="../../gluon/index.html">About</a></li>
<li><a class="main-nav-link" href="http://gluon.mxnet.io">Tutorials</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="../../api/python/index.html">Python</a></li>
<li><a class="main-nav-link" href="../../api/scala/index.html">Scala</a></li>
<li><a class="main-nav-link" href="../../api/r/index.html">R</a></li>
<li><a class="main-nav-link" href="../../api/julia/index.html">Julia</a></li>
<li><a class="main-nav-link" href="../../api/c++/index.html">C++</a></li>
<li><a class="main-nav-link" href="../../api/perl/index.html">Perl</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor-docs">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs">
<li><a class="main-nav-link" href="../../faq/index.html">FAQ</a></li>
<li><a class="main-nav-link" href="../../architecture/index.html">Architecture</a></li>
<li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example">Examples</a></li>
<li><a class="main-nav-link" href="../../model_zoo/index.html">Model Zoo</a></li>
</ul>
</span>
<a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a>
<span id="dropdown-menu-position-anchor-community">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community">
<li><a class="main-nav-link" href="../../community/index.html">Community</a></li>
<li><a class="main-nav-link" href="../../community/contribute.html">Contribute</a></li>
<li><a class="main-nav-link" href="../../community/powered_by.html">Powered By</a></li>
</ul>
</span>
<a class="main-nav-link" href="http://discuss.mxnet.io">Discuss</a>
<span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">Versions(1.0.0)<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/>1.1.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/1.0.0/index.html>1.0.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a class="main-nav-link" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></span></nav>
<script> function getRootPath(){ return "../../" } </script>
<div class="burgerIcon dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"></a>
<ul class="dropdown-menu" id="burgerMenu">
<li><a href="../../install/index.html">Install</a></li>
<li><a class="main-nav-link" href="../../tutorials/index.html">Tutorials</a></li>
<li class="dropdown-submenu">
<a href="#" tabindex="-1">Community</a>
<ul class="dropdown-menu">
<li><a href="../../community/index.html" tabindex="-1">Community</a></li>
<li><a href="../../community/contribute.html" tabindex="-1">Contribute</a></li>
<li><a href="../../community/powered_by.html" tabindex="-1">Powered By</a></li>
</ul>
</li>
<li class="dropdown-submenu">
<a href="#" tabindex="-1">API</a>
<ul class="dropdown-menu">
<li><a href="../../api/python/index.html" tabindex="-1">Python</a>
</li>
<li><a href="../../api/scala/index.html" tabindex="-1">Scala</a>
</li>
<li><a href="../../api/r/index.html" tabindex="-1">R</a>
</li>
<li><a href="../../api/julia/index.html" tabindex="-1">Julia</a>
</li>
<li><a href="../../api/c++/index.html" tabindex="-1">C++</a>
</li>
<li><a href="../../api/perl/index.html" tabindex="-1">Perl</a>
</li>
</ul>
</li>
<li class="dropdown-submenu">
<a href="#" tabindex="-1">Docs</a>
<ul class="dropdown-menu">
<li><a href="../../tutorials/index.html" tabindex="-1">Tutorials</a></li>
<li><a href="../../faq/index.html" tabindex="-1">FAQ</a></li>
<li><a href="../../architecture/index.html" tabindex="-1">Architecture</a></li>
<li><a href="https://github.com/apache/incubator-mxnet/tree/1.0.0/example" tabindex="-1">Examples</a></li>
<li><a href="../../model_zoo/index.html" tabindex="-1">Model Zoo</a></li>
</ul>
</li>
<li><a href="../../architecture/index.html">Architecture</a></li>
<li><a class="main-nav-link" href="https://github.com/dmlc/mxnet">Github</a></li>
<li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">Versions(1.0.0)</a><ul class="dropdown-menu"><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/>1.1.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/1.0.0/index.html>1.0.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.1/index.html>0.12.1</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.12.0/index.html>0.12.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/0.11.0/index.html>0.11.0</a></li><li><a tabindex="-1" href=https://mxnet.incubator.apache.org/versions/master/index.html>master</a></li></ul></li></ul>
</div>
<div class="plusIcon dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a>
<ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul>
</div>
<div id="search-input-wrap">
<form action="../../search.html" autocomplete="off" class="" method="get" role="search">
<div class="form-group inner-addon left-addon">
<i class="glyphicon glyphicon-search"></i>
<input class="form-control" name="q" placeholder="Search" type="text"/>
</div>
<input name="check_keywords" type="hidden" value="yes"/>
<input name="area" type="hidden" value="default">
</input></form>
<div id="search-preview"></div>
</div>
<div id="searchIcon">
<span aria-hidden="true" class="glyphicon glyphicon-search"></span>
</div>
<!-- <div id="lang-select-wrap"> -->
<!-- <label id="lang-select-label"> -->
<!-- <\!-- <i class="fa fa-globe"></i> -\-> -->
<!-- <span></span> -->
<!-- </label> -->
<!-- <select id="lang-select"> -->
<!-- <option value="en">Eng</option> -->
<!-- <option value="zh">中文</option> -->
<!-- </select> -->
<!-- </div> -->
<!-- <a id="mobile-nav-toggle">
<span class="mobile-nav-toggle-bar"></span>
<span class="mobile-nav-toggle-bar"></span>
<span class="mobile-nav-toggle-bar"></span>
</a> -->
</div>
</div>
</div>
<script type="text/javascript">
$('body').css('background', 'white');
</script>
<div class="container">
<div class="row">
<div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation">
<div class="sphinxsidebarwrapper">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../api/python/index.html">Python Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/r/index.html">R Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/julia/index.html">Julia Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/c++/index.html">C++ Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/scala/index.html">Scala Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/perl/index.html">Perl Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index.html">HowTo Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../architecture/index.html">System Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../tutorials/index.html">Tutorials</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../community/index.html">Community</a></li>
</ul>
</div>
</div>
<div class="content">
<div class="page-tracker"></div>
<h1>Source code for mxnet.executor_manager</h1><div class="highlight"><pre>
<span></span><span class="c1"># Licensed to the Apache Software Foundation (ASF) under one</span>
<span class="c1"># or more contributor license agreements. See the NOTICE file</span>
<span class="c1"># distributed with this work for additional information</span>
<span class="c1"># regarding copyright ownership. The ASF licenses this file</span>
<span class="c1"># to you under the Apache License, Version 2.0 (the</span>
<span class="c1"># "License"); you may not use this file except in compliance</span>
<span class="c1"># with the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing,</span>
<span class="c1"># software distributed under the License is distributed on an</span>
<span class="c1"># "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY</span>
<span class="c1"># KIND, either express or implied. See the License for the</span>
<span class="c1"># specific language governing permissions and limitations</span>
<span class="c1"># under the License.</span>
<span class="c1"># coding: utf-8</span>
<span class="c1"># pylint: disable=invalid-name, protected-access, too-many-locals, too-many-arguments, too-many-statements</span>
<span class="sd">"""Executor manager."""</span>
<span class="kn">from</span> <span class="nn">__future__</span> <span class="kn">import</span> <span class="n">absolute_import</span>
<span class="kn">import</span> <span class="nn">logging</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">.base</span> <span class="kn">import</span> <span class="n">mx_real_t</span>
<span class="kn">from</span> <span class="nn">.</span> <span class="kn">import</span> <span class="n">ndarray</span> <span class="k">as</span> <span class="n">nd</span>
<span class="kn">from</span> <span class="nn">.context</span> <span class="kn">import</span> <span class="n">cpu</span>
<span class="kn">from</span> <span class="nn">.io</span> <span class="kn">import</span> <span class="n">DataDesc</span>
<span class="k">def</span> <span class="nf">_split_input_slice</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">work_load_list</span><span class="p">):</span>
<span class="sd">"""Get input slice from the input shape.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> batch_size : int</span>
<span class="sd"> The number of samples in a mini-batch.</span>
<span class="sd"> work_load_list : list of float or int, optional</span>
<span class="sd"> The list of work load for different devices,</span>
<span class="sd"> in the same order as `ctx`.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> slices : list of slice</span>
<span class="sd"> The split slices to get a specific slice.</span>
<span class="sd"> Raises</span>
<span class="sd"> ------</span>
<span class="sd"> ValueError</span>
<span class="sd"> In case of too many splits, leading to some empty slices.</span>
<span class="sd"> """</span>
<span class="n">total_work_load</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">work_load_list</span><span class="p">)</span>
<span class="n">batch_num_list</span> <span class="o">=</span> <span class="p">[</span><span class="nb">round</span><span class="p">(</span><span class="n">work_load</span> <span class="o">*</span> <span class="n">batch_size</span> <span class="o">/</span> <span class="n">total_work_load</span><span class="p">)</span>
<span class="k">for</span> <span class="n">work_load</span> <span class="ow">in</span> <span class="n">work_load_list</span><span class="p">]</span>
<span class="n">batch_num_sum</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">batch_num_list</span><span class="p">)</span>
<span class="k">if</span> <span class="n">batch_num_sum</span> <span class="o"><</span> <span class="n">batch_size</span><span class="p">:</span>
<span class="n">batch_num_list</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+=</span> <span class="n">batch_size</span> <span class="o">-</span> <span class="n">batch_num_sum</span>
<span class="n">slices</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">end</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">batch_num</span> <span class="ow">in</span> <span class="n">batch_num_list</span><span class="p">:</span>
<span class="n">begin</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="nb">min</span><span class="p">((</span><span class="n">end</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)))</span>
<span class="n">end</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="nb">min</span><span class="p">((</span><span class="n">begin</span> <span class="o">+</span> <span class="n">batch_num</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)))</span>
<span class="k">if</span> <span class="n">begin</span> <span class="o">>=</span> <span class="n">end</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">'Too many slices. Some splits are empty.'</span><span class="p">)</span>
<span class="n">slices</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">slice</span><span class="p">(</span><span class="n">begin</span><span class="p">,</span> <span class="n">end</span><span class="p">))</span>
<span class="k">return</span> <span class="n">slices</span>
<span class="k">def</span> <span class="nf">_check_arguments</span><span class="p">(</span><span class="n">symbol</span><span class="p">):</span>
<span class="sd">"""Check the argument names of symbol.</span>
<span class="sd"> This function checks the duplication of arguments in Symbol.</span>
<span class="sd"> The check is done for feedforward net for now.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> symbol : Symbol</span>
<span class="sd"> The network configuration.</span>
<span class="sd"> """</span>
<span class="n">arg_set</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
<span class="n">arg_names</span> <span class="o">=</span> <span class="n">symbol</span><span class="o">.</span><span class="n">list_arguments</span><span class="p">()</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">arg_names</span><span class="p">:</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">arg_set</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">((</span><span class="s1">'Find duplicated argument name </span><span class="se">\"</span><span class="si">%s</span><span class="se">\"</span><span class="s1">, '</span> <span class="o">+</span>
<span class="s1">'please make the weight name non-duplicated(using name arguments), '</span> <span class="o">+</span>
<span class="s1">'arguments are </span><span class="si">%s</span><span class="s1">'</span><span class="p">)</span> <span class="o">%</span> <span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="nb">str</span><span class="p">(</span><span class="n">arg_names</span><span class="p">)))</span>
<span class="n">arg_set</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
<span class="n">aux_set</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
<span class="n">aux_names</span> <span class="o">=</span> <span class="n">symbol</span><span class="o">.</span><span class="n">list_auxiliary_states</span><span class="p">()</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">aux_names</span><span class="p">:</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">aux_set</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="p">(</span><span class="s1">'Find duplicated auxiliary param name </span><span class="se">\"</span><span class="si">%s</span><span class="se">\"</span><span class="s1">, '</span> <span class="o">+</span>
<span class="s1">'please make the weight name non-duplicated(using name arguments), '</span> <span class="o">+</span>
<span class="s1">'arguments are </span><span class="si">%s</span><span class="s1">, auxiliary params are </span><span class="si">%s</span><span class="s1">'</span>
<span class="p">)</span> <span class="o">%</span> <span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="nb">str</span><span class="p">(</span><span class="n">arg_names</span><span class="p">),</span> <span class="nb">str</span><span class="p">(</span><span class="n">aux_names</span><span class="p">)))</span>
<span class="n">aux_set</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">_load_general</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">targets</span><span class="p">):</span>
<span class="sd">"""Load a list of arrays into a list of arrays specified by slices."""</span>
<span class="k">for</span> <span class="n">d_src</span><span class="p">,</span> <span class="n">d_targets</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">targets</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">d_targets</span><span class="p">,</span> <span class="n">nd</span><span class="o">.</span><span class="n">NDArray</span><span class="p">):</span>
<span class="n">d_src</span><span class="o">.</span><span class="n">copyto</span><span class="p">(</span><span class="n">d_targets</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">d_targets</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">stop</span> <span class="o">==</span> <span class="n">d_src</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> \
<span class="s2">"Batch size miss match. Expected </span><span class="si">%d</span><span class="s2">, got </span><span class="si">%d</span><span class="s2">"</span><span class="o">%</span><span class="p">(</span> \
<span class="n">d_targets</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">stop</span><span class="p">,</span> <span class="n">d_src</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="k">for</span> <span class="n">slice_idx</span><span class="p">,</span> <span class="n">d_dst</span> <span class="ow">in</span> <span class="n">d_targets</span><span class="p">:</span>
<span class="n">d_src</span><span class="p">[</span><span class="n">slice_idx</span><span class="p">]</span><span class="o">.</span><span class="n">copyto</span><span class="p">(</span><span class="n">d_dst</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">_load_data</span><span class="p">(</span><span class="n">batch</span><span class="p">,</span> <span class="n">targets</span><span class="p">):</span>
<span class="sd">"""Load data into sliced arrays."""</span>
<span class="n">_load_general</span><span class="p">(</span><span class="n">batch</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="n">targets</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">_load_label</span><span class="p">(</span><span class="n">batch</span><span class="p">,</span> <span class="n">targets</span><span class="p">):</span>
<span class="sd">"""Load label into sliced arrays."""</span>
<span class="n">_load_general</span><span class="p">(</span><span class="n">batch</span><span class="o">.</span><span class="n">label</span><span class="p">,</span> <span class="n">targets</span><span class="p">)</span>
<span class="c1"># pylint: disable=too-many-branches</span>
<span class="k">def</span> <span class="nf">_bind_exec</span><span class="p">(</span><span class="n">sym</span><span class="p">,</span> <span class="n">ctx</span><span class="p">,</span> <span class="n">input_shapes</span><span class="p">,</span> <span class="n">param_names</span><span class="p">,</span> <span class="n">need_grad</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
<span class="n">base_exec</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">shared_data_arrays</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">input_types</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">logger</span><span class="o">=</span><span class="n">logging</span><span class="p">):</span>
<span class="sd">"""bind executor for bucketing, potentially sharing data with an existing executor."""</span>
<span class="n">arg_shape</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">aux_shape</span> <span class="o">=</span> <span class="n">sym</span><span class="o">.</span><span class="n">infer_shape</span><span class="p">(</span><span class="o">**</span><span class="n">input_shapes</span><span class="p">)</span>
<span class="k">assert</span><span class="p">(</span><span class="n">arg_shape</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">)</span>
<span class="k">if</span> <span class="n">input_types</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">input_types</span> <span class="o">=</span> <span class="p">{</span><span class="n">k</span><span class="p">:</span> <span class="n">mx_real_t</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">input_shapes</span><span class="o">.</span><span class="n">keys</span><span class="p">()}</span>
<span class="n">arg_types</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">aux_types</span> <span class="o">=</span> <span class="n">sym</span><span class="o">.</span><span class="n">infer_type</span><span class="p">(</span><span class="o">**</span><span class="n">input_types</span><span class="p">)</span>
<span class="k">assert</span><span class="p">(</span><span class="n">arg_types</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">)</span>
<span class="n">arg_arrays</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">grad_arrays</span> <span class="o">=</span> <span class="p">{}</span> <span class="k">if</span> <span class="n">need_grad</span> <span class="o">!=</span> <span class="bp">False</span> <span class="k">else</span> <span class="bp">None</span>
<span class="n">arg_names</span> <span class="o">=</span> <span class="n">sym</span><span class="o">.</span><span class="n">list_arguments</span><span class="p">()</span>
<span class="k">if</span> <span class="n">need_grad</span> <span class="ow">is</span> <span class="bp">False</span><span class="p">:</span>
<span class="n">need_grad</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
<span class="k">elif</span> <span class="n">need_grad</span> <span class="ow">is</span> <span class="bp">True</span><span class="p">:</span>
<span class="n">need_grad</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">arg_names</span><span class="p">)</span> <span class="o">-</span> <span class="nb">set</span><span class="p">(</span><span class="n">input_shapes</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">need_grad</span><span class="p">,</span> <span class="nb">set</span><span class="p">):</span>
<span class="k">pass</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">AssertionError</span><span class="p">(</span><span class="s2">"need_grad must be boolean or set."</span><span class="p">)</span>
<span class="n">grad_req</span> <span class="o">=</span> <span class="p">{</span><span class="n">name</span><span class="p">:(</span><span class="s1">'write'</span> <span class="k">if</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">need_grad</span> <span class="k">else</span> <span class="s1">'null'</span><span class="p">)</span> <span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">arg_names</span><span class="p">}</span>
<span class="c1"># create or borrow arguments and gradients</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">name</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">arg_names</span><span class="p">):</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">param_names</span><span class="p">:</span>
<span class="c1"># data or label</span>
<span class="k">if</span> <span class="n">shared_data_arrays</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span> <span class="ow">and</span> \
<span class="n">name</span> <span class="ow">in</span> <span class="n">shared_data_arrays</span><span class="p">:</span>
<span class="n">arg_arr</span> <span class="o">=</span> <span class="n">shared_data_arrays</span><span class="p">[</span><span class="n">name</span><span class="p">]</span>
<span class="k">if</span> <span class="n">np</span><span class="o">.</span><span class="n">prod</span><span class="p">(</span><span class="n">arg_arr</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">>=</span> <span class="n">np</span><span class="o">.</span><span class="n">prod</span><span class="p">(</span><span class="n">arg_shape</span><span class="p">[</span><span class="n">i</span><span class="p">]):</span>
<span class="c1"># good, we can share this memory</span>
<span class="k">assert</span><span class="p">(</span><span class="n">arg_types</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="n">arg_arr</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">arg_arr</span> <span class="o">=</span> <span class="n">arg_arr</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">arg_shape</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">logger</span><span class="o">.</span><span class="n">warning</span><span class="p">((</span><span class="s1">'bucketing: data "</span><span class="si">%s</span><span class="s1">" has a shape </span><span class="si">%s</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">arg_shape</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span> <span class="o">+</span>
<span class="p">(</span><span class="s1">', which is larger than already allocated '</span><span class="p">)</span> <span class="o">+</span>
<span class="p">(</span><span class="s1">'shape </span><span class="si">%s</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="n">arg_arr</span><span class="o">.</span><span class="n">shape</span><span class="p">,))</span> <span class="o">+</span>
<span class="p">(</span><span class="s1">'. Need to re-allocate. Consider putting '</span><span class="p">)</span> <span class="o">+</span>
<span class="p">(</span><span class="s1">'default_bucket_key to be the bucket taking the largest '</span><span class="p">)</span> <span class="o">+</span>
<span class="p">(</span><span class="s1">'input for better memory sharing.'</span><span class="p">))</span>
<span class="n">arg_arr</span> <span class="o">=</span> <span class="n">nd</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">arg_shape</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">ctx</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">arg_types</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<span class="c1"># replace existing shared array because the new one is bigger</span>
<span class="n">shared_data_arrays</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">arg_arr</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">arg_arr</span> <span class="o">=</span> <span class="n">nd</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">arg_shape</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">ctx</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">arg_types</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<span class="k">if</span> <span class="n">shared_data_arrays</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">shared_data_arrays</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">arg_arr</span>
<span class="n">arg_arrays</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">arg_arr</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># model parameter</span>
<span class="k">if</span> <span class="n">base_exec</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">arg_arr</span> <span class="o">=</span> <span class="n">nd</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">arg_shape</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">ctx</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">arg_types</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">need_grad</span><span class="p">:</span>
<span class="n">grad_arr</span> <span class="o">=</span> <span class="n">nd</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">arg_shape</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">ctx</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">arg_types</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<span class="n">grad_arrays</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">grad_arr</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">arg_arr</span> <span class="o">=</span> <span class="n">base_exec</span><span class="o">.</span><span class="n">arg_dict</span><span class="p">[</span><span class="n">name</span><span class="p">]</span>
<span class="k">assert</span> <span class="n">arg_arr</span><span class="o">.</span><span class="n">shape</span> <span class="o">==</span> <span class="n">arg_shape</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
<span class="k">assert</span> <span class="n">arg_arr</span><span class="o">.</span><span class="n">dtype</span> <span class="o">==</span> <span class="n">arg_types</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
<span class="k">if</span> <span class="n">name</span> <span class="ow">in</span> <span class="n">need_grad</span><span class="p">:</span>
<span class="n">grad_arrays</span><span class="p">[</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">base_exec</span><span class="o">.</span><span class="n">grad_dict</span><span class="p">[</span><span class="n">name</span><span class="p">]</span>
<span class="n">arg_arrays</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">arg_arr</span><span class="p">)</span>
<span class="c1"># create or borrow aux variables</span>
<span class="k">if</span> <span class="n">base_exec</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">aux_arrays</span> <span class="o">=</span> <span class="p">[</span><span class="n">nd</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="n">ctx</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">t</span><span class="p">)</span> <span class="k">for</span> <span class="n">s</span><span class="p">,</span> <span class="n">t</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">aux_shape</span><span class="p">,</span> <span class="n">aux_types</span><span class="p">)]</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">a</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">base_exec</span><span class="o">.</span><span class="n">aux_arrays</span><span class="p">):</span>
<span class="k">assert</span> <span class="n">aux_shape</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="n">a</span><span class="o">.</span><span class="n">shape</span>
<span class="k">assert</span> <span class="n">aux_types</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="n">a</span><span class="o">.</span><span class="n">dtype</span>
<span class="n">aux_arrays</span> <span class="o">=</span> <span class="p">[</span><span class="n">a</span> <span class="k">for</span> <span class="n">a</span> <span class="ow">in</span> <span class="n">base_exec</span><span class="o">.</span><span class="n">aux_arrays</span><span class="p">]</span>
<span class="n">executor</span> <span class="o">=</span> <span class="n">sym</span><span class="o">.</span><span class="n">bind</span><span class="p">(</span><span class="n">ctx</span><span class="o">=</span><span class="n">ctx</span><span class="p">,</span> <span class="n">args</span><span class="o">=</span><span class="n">arg_arrays</span><span class="p">,</span> <span class="n">args_grad</span><span class="o">=</span><span class="n">grad_arrays</span><span class="p">,</span>
<span class="n">aux_states</span><span class="o">=</span><span class="n">aux_arrays</span><span class="p">,</span>
<span class="n">grad_req</span><span class="o">=</span><span class="n">grad_req</span><span class="p">,</span> <span class="n">shared_exec</span><span class="o">=</span><span class="n">base_exec</span><span class="p">)</span>
<span class="k">return</span> <span class="n">executor</span>
<div class="viewcode-block" id="DataParallelExecutorGroup"><a class="viewcode-back" href="../../api/python/executor/executor.html#mxnet.executor_manager.DataParallelExecutorGroup">[docs]</a><span class="k">class</span> <span class="nc">DataParallelExecutorGroup</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="sd">"""A group of executors living on different devices, for data parallelization.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> sym: Symbol</span>
<span class="sd"> The network configuration.</span>
<span class="sd"> arg_names: list of str</span>
<span class="sd"> Equals `sym.list_arguments()`</span>
<span class="sd"> param_names: list of str</span>
<span class="sd"> List of names of all trainable parameters.</span>
<span class="sd"> ctx: list of Context</span>
<span class="sd"> List of devices for training (data parallelization).</span>
<span class="sd"> slices: list of int</span>
<span class="sd"> Describes how the data parallelization splits data into different devices.</span>
<span class="sd"> train_data: DataIter (or DataBatch)</span>
<span class="sd"> The dataset for training. It could be any object with `provide_data` and</span>
<span class="sd"> `provide_label` properties. Loading of actual data is not necessarily needed</span>
<span class="sd"> at this stage.</span>
<span class="sd"> shared_grop: DataParallelExecutorGroup</span>
<span class="sd"> An existing executor group, if to share parameters with it.</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sym</span><span class="p">,</span> <span class="n">arg_names</span><span class="p">,</span> <span class="n">param_names</span><span class="p">,</span> <span class="n">ctx</span><span class="p">,</span> <span class="n">slices</span><span class="p">,</span> <span class="n">train_data</span><span class="p">,</span> <span class="n">shared_group</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="c1"># make sure the architecture is valid</span>
<span class="n">_check_arguments</span><span class="p">(</span><span class="n">sym</span><span class="p">)</span>
<span class="k">if</span> <span class="n">shared_group</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">shared_data_arrays</span> <span class="o">=</span> <span class="p">[{}</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="n">ctx</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">shared_data_arrays</span> <span class="o">=</span> <span class="n">shared_group</span><span class="o">.</span><span class="n">shared_data_arrays</span>
<span class="bp">self</span><span class="o">.</span><span class="n">data_names</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">train_data</span><span class="o">.</span><span class="n">provide_data</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">label_names</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">train_data</span><span class="o">.</span><span class="n">provide_label</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">aux_names</span> <span class="o">=</span> <span class="n">sym</span><span class="o">.</span><span class="n">list_auxiliary_states</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">param_idx</span> <span class="o">=</span> <span class="p">[</span><span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">arg_names</span><span class="p">))</span> <span class="k">if</span> <span class="n">arg_names</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="ow">in</span> <span class="n">param_names</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">param_names</span> <span class="o">=</span> <span class="p">[</span><span class="n">arg_names</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">param_idx</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">train_execs</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">ctxi</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">ctx</span><span class="p">):</span>
<span class="n">data_shapes</span> <span class="o">=</span> <span class="p">{}</span>
<span class="n">data_types</span> <span class="o">=</span> <span class="p">{}</span>
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">train_data</span><span class="o">.</span><span class="n">provide_data</span> <span class="o">+</span> <span class="n">train_data</span><span class="o">.</span><span class="n">provide_label</span><span class="p">:</span>
<span class="n">data_shapes</span><span class="p">[</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]]</span> <span class="o">=</span> <span class="nb">tuple</span><span class="p">([</span><span class="n">slices</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">stop</span> <span class="o">-</span> <span class="n">slices</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">start</span><span class="p">]</span> <span class="o">+</span> <span class="nb">list</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">1</span><span class="p">:]))</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">DataDesc</span><span class="p">):</span>
<span class="n">data_types</span><span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">dtype</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">data_types</span><span class="p">[</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]]</span> <span class="o">=</span> <span class="n">mx_real_t</span>
<span class="n">shared_exec</span> <span class="o">=</span> <span class="bp">None</span> <span class="k">if</span> <span class="n">shared_group</span> <span class="ow">is</span> <span class="bp">None</span> <span class="k">else</span> <span class="n">shared_group</span><span class="o">.</span><span class="n">train_execs</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
<span class="n">train_exec</span> <span class="o">=</span> <span class="n">_bind_exec</span><span class="p">(</span><span class="n">sym</span><span class="p">,</span> <span class="n">ctxi</span><span class="p">,</span> <span class="n">data_shapes</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">param_names</span><span class="p">,</span>
<span class="n">need_grad</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span> <span class="n">base_exec</span><span class="o">=</span><span class="n">shared_exec</span><span class="p">,</span>
<span class="n">shared_data_arrays</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">shared_data_arrays</span><span class="p">[</span><span class="n">i</span><span class="p">],</span>
<span class="n">input_types</span><span class="o">=</span><span class="n">data_types</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">train_execs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">train_exec</span><span class="p">)</span>
<span class="c1"># data structure</span>
<span class="bp">self</span><span class="o">.</span><span class="n">data_arrays</span> <span class="o">=</span> <span class="p">[[(</span><span class="n">slices</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">e</span><span class="o">.</span><span class="n">arg_dict</span><span class="p">[</span><span class="n">name</span><span class="p">])</span> <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">e</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">train_execs</span><span class="p">)]</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">data_names</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">label_arrays</span> <span class="o">=</span> <span class="p">[[(</span><span class="n">slices</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">e</span><span class="o">.</span><span class="n">arg_dict</span><span class="p">[</span><span class="n">name</span><span class="p">])</span> <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">e</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">train_execs</span><span class="p">)]</span>
<span class="k">for</span> <span class="n">name</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">label_names</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">param_arrays</span> <span class="o">=</span> <span class="p">[[</span><span class="n">e</span><span class="o">.</span><span class="n">arg_arrays</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">train_execs</span><span class="p">]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">param_idx</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">grad_arrays</span> <span class="o">=</span> <span class="p">[[</span><span class="n">e</span><span class="o">.</span><span class="n">grad_arrays</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">train_execs</span><span class="p">]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">param_idx</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">aux_arrays</span> <span class="o">=</span> <span class="p">[[</span><span class="n">e</span><span class="o">.</span><span class="n">aux_arrays</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">train_execs</span><span class="p">]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">aux_names</span><span class="p">))]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">slices</span> <span class="o">=</span> <span class="n">slices</span>
<div class="viewcode-block" id="DataParallelExecutorGroup.load_data_batch"><a class="viewcode-back" href="../../api/python/executor/executor.html#mxnet.executor_manager.DataParallelExecutorGroup.load_data_batch">[docs]</a> <span class="k">def</span> <span class="nf">load_data_batch</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data_batch</span><span class="p">):</span>
<span class="sd">"""Load data and labels into arrays."""</span>
<span class="n">_load_data</span><span class="p">(</span><span class="n">data_batch</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">data_arrays</span><span class="p">)</span>
<span class="n">_load_label</span><span class="p">(</span><span class="n">data_batch</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">label_arrays</span><span class="p">)</span></div>
<div class="viewcode-block" id="DataParallelExecutorGroup.forward"><a class="viewcode-back" href="../../api/python/executor/executor.html#mxnet.executor_manager.DataParallelExecutorGroup.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">is_train</span><span class="o">=</span><span class="bp">False</span><span class="p">):</span>
<span class="sd">"""Perform a forward pass on each executor."""</span>
<span class="k">for</span> <span class="n">texec</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">train_execs</span><span class="p">:</span>
<span class="n">texec</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="n">is_train</span><span class="o">=</span><span class="n">is_train</span><span class="p">)</span></div>
<div class="viewcode-block" id="DataParallelExecutorGroup.backward"><a class="viewcode-back" href="../../api/python/executor/executor.html#mxnet.executor_manager.DataParallelExecutorGroup.backward">[docs]</a> <span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Perform a backward pass on each executor."""</span>
<span class="k">for</span> <span class="n">texec</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">train_execs</span><span class="p">:</span>
<span class="n">texec</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span></div>
<div class="viewcode-block" id="DataParallelExecutorGroup.update_metric"><a class="viewcode-back" href="../../api/python/executor/executor.html#mxnet.executor_manager.DataParallelExecutorGroup.update_metric">[docs]</a> <span class="k">def</span> <span class="nf">update_metric</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">metric</span><span class="p">,</span> <span class="n">labels</span><span class="p">):</span>
<span class="sd">"""Update evaluation metric with label and current outputs."""</span>
<span class="k">for</span> <span class="n">texec</span><span class="p">,</span> <span class="n">islice</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">train_execs</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">slices</span><span class="p">):</span>
<span class="n">labels_slice</span> <span class="o">=</span> <span class="p">[</span><span class="n">label</span><span class="p">[</span><span class="n">islice</span><span class="p">]</span> <span class="k">for</span> <span class="n">label</span> <span class="ow">in</span> <span class="n">labels</span><span class="p">]</span>
<span class="n">metric</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">labels_slice</span><span class="p">,</span> <span class="n">texec</span><span class="o">.</span><span class="n">outputs</span><span class="p">)</span></div></div>
<div class="viewcode-block" id="DataParallelExecutorManager"><a class="viewcode-back" href="../../api/python/executor/executor.html#mxnet.executor_manager.DataParallelExecutorManager">[docs]</a><span class="k">class</span> <span class="nc">DataParallelExecutorManager</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="sd">""" Helper class to manage multiple executors for data parallelism.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> symbol : Symbol</span>
<span class="sd"> Output symbol.</span>
<span class="sd"> ctx : list of Context</span>
<span class="sd"> Devices to run on.</span>
<span class="sd"> param_names: list of str</span>
<span class="sd"> Name of all trainable parameters of the network.</span>
<span class="sd"> arg_names: list of str</span>
<span class="sd"> Name of all arguments of the network.</span>
<span class="sd"> aux_names: list of str</span>
<span class="sd"> Name of all auxiliary states of the network.</span>
<span class="sd"> train_data : DataIter</span>
<span class="sd"> Training data iterator.</span>
<span class="sd"> work_load_list : list of float or int, optional</span>
<span class="sd"> The list of work load for different devices,</span>
<span class="sd"> in the same order as ctx.</span>
<span class="sd"> logger : logging logger</span>
<span class="sd"> When not specified, default logger will be used.</span>
<span class="sd"> sym_gen : A function that generate new Symbols depending on different</span>
<span class="sd"> input shapes. Used only for bucketing.</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">symbol</span><span class="p">,</span> <span class="n">ctx</span><span class="p">,</span> <span class="n">train_data</span><span class="p">,</span>
<span class="n">arg_names</span><span class="p">,</span> <span class="n">param_names</span><span class="p">,</span> <span class="n">aux_names</span><span class="p">,</span>
<span class="n">work_load_list</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">logger</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">sym_gen</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="k">if</span> <span class="n">logger</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">logger</span> <span class="o">=</span> <span class="n">logging</span>
<span class="c1"># preparation</span>
<span class="n">num_device</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">ctx</span><span class="p">)</span>
<span class="n">logger</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="s1">'Start training with </span><span class="si">%s</span><span class="s1">'</span><span class="p">,</span> <span class="nb">str</span><span class="p">(</span><span class="n">ctx</span><span class="p">))</span>
<span class="k">if</span> <span class="n">work_load_list</span> <span class="ow">is</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">work_load_list</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">num_device</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">work_load_list</span><span class="p">,</span> <span class="nb">list</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">work_load_list</span><span class="p">)</span> <span class="o">==</span> <span class="n">num_device</span><span class="p">,</span> \
<span class="s2">"Invalid settings for work load. "</span>
<span class="n">slices</span> <span class="o">=</span> <span class="n">_split_input_slice</span><span class="p">(</span><span class="n">train_data</span><span class="o">.</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">work_load_list</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">slices</span> <span class="o">=</span> <span class="n">slices</span>
<span class="bp">self</span><span class="o">.</span><span class="n">arg_names</span> <span class="o">=</span> <span class="n">arg_names</span>
<span class="bp">self</span><span class="o">.</span><span class="n">param_names</span> <span class="o">=</span> <span class="n">param_names</span>
<span class="bp">self</span><span class="o">.</span><span class="n">aux_names</span> <span class="o">=</span> <span class="n">aux_names</span>
<span class="bp">self</span><span class="o">.</span><span class="n">ctx</span> <span class="o">=</span> <span class="n">ctx</span>
<span class="bp">self</span><span class="o">.</span><span class="n">execgrp</span> <span class="o">=</span> <span class="n">DataParallelExecutorGroup</span><span class="p">(</span><span class="n">symbol</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">arg_names</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">param_names</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">ctx</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">slices</span><span class="p">,</span> <span class="n">train_data</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">symbol</span> <span class="o">=</span> <span class="n">symbol</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sym_gen</span> <span class="o">=</span> <span class="n">sym_gen</span>
<span class="bp">self</span><span class="o">.</span><span class="n">curr_execgrp</span> <span class="o">=</span> <span class="bp">None</span> <span class="c1"># this is set when data is loaded</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">sym_gen</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">execgrp_bucket</span> <span class="o">=</span> <span class="p">{</span><span class="n">train_data</span><span class="o">.</span><span class="n">default_bucket_key</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">execgrp</span><span class="p">}</span>
<div class="viewcode-block" id="DataParallelExecutorManager.install_monitor"><a class="viewcode-back" href="../../api/python/executor/executor.html#mxnet.executor_manager.DataParallelExecutorManager.install_monitor">[docs]</a> <span class="k">def</span> <span class="nf">install_monitor</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">monitor</span><span class="p">):</span>
<span class="sd">"""Install monitor on all executors."""</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">sym_gen</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span><span class="s2">"Monitoring is not implemented for bucketing"</span><span class="p">)</span>
<span class="k">for</span> <span class="n">train_exec</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">execgrp</span><span class="o">.</span><span class="n">train_execs</span><span class="p">:</span>
<span class="n">monitor</span><span class="o">.</span><span class="n">install</span><span class="p">(</span><span class="n">train_exec</span><span class="p">)</span></div>
<div class="viewcode-block" id="DataParallelExecutorManager.set_params"><a class="viewcode-back" href="../../api/python/executor/executor.html#mxnet.executor_manager.DataParallelExecutorManager.set_params">[docs]</a> <span class="k">def</span> <span class="nf">set_params</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arg_params</span><span class="p">,</span> <span class="n">aux_params</span><span class="p">):</span>
<span class="sd">"""Set parameter and aux values.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> arg_params : list of NDArray</span>
<span class="sd"> Source parameter arrays</span>
<span class="sd"> aux_params : list of NDArray</span>
<span class="sd"> Source aux arrays.</span>
<span class="sd"> """</span>
<span class="k">for</span> <span class="n">texec</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">execgrp</span><span class="o">.</span><span class="n">train_execs</span><span class="p">:</span>
<span class="n">texec</span><span class="o">.</span><span class="n">copy_params_from</span><span class="p">(</span><span class="n">arg_params</span><span class="p">,</span> <span class="n">aux_params</span><span class="p">)</span></div>
<div class="viewcode-block" id="DataParallelExecutorManager.copy_to"><a class="viewcode-back" href="../../api/python/executor/executor.html#mxnet.executor_manager.DataParallelExecutorManager.copy_to">[docs]</a> <span class="k">def</span> <span class="nf">copy_to</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arg_params</span><span class="p">,</span> <span class="n">aux_params</span><span class="p">):</span>
<span class="sd">""" Copy data from each executor to ```arg_params`` and ``aux_params``.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> arg_params : list of NDArray</span>
<span class="sd"> Target parameter arrays.</span>
<span class="sd"> aux_params : list of NDArray</span>
<span class="sd"> Target aux arrays.</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> - This function will inplace update the NDArrays in arg_params and aux_params.</span>
<span class="sd"> """</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">block</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">param_names</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">param_arrays</span><span class="p">):</span>
<span class="n">weight</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">w</span><span class="o">.</span><span class="n">copyto</span><span class="p">(</span><span class="n">cpu</span><span class="p">())</span> <span class="k">for</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">block</span><span class="p">)</span> <span class="o">/</span> <span class="nb">len</span><span class="p">(</span><span class="n">block</span><span class="p">)</span>
<span class="n">weight</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">arg_params</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span><span class="o">.</span><span class="n">copyto</span><span class="p">(</span><span class="n">arg_params</span><span class="p">[</span><span class="n">name</span><span class="p">])</span>
<span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">block</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">aux_names</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">aux_arrays</span><span class="p">):</span>
<span class="n">weight</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">w</span><span class="o">.</span><span class="n">copyto</span><span class="p">(</span><span class="n">cpu</span><span class="p">())</span> <span class="k">for</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">block</span><span class="p">)</span> <span class="o">/</span> <span class="nb">len</span><span class="p">(</span><span class="n">block</span><span class="p">)</span>
<span class="n">weight</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">aux_params</span><span class="p">[</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span><span class="o">.</span><span class="n">copyto</span><span class="p">(</span><span class="n">aux_params</span><span class="p">[</span><span class="n">name</span><span class="p">])</span></div>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">param_arrays</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Shared parameter arrays."""</span>
<span class="c1"># param arrays should be shared by all executor groups</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">execgrp</span><span class="o">.</span><span class="n">param_arrays</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">grad_arrays</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Shared gradient arrays."""</span>
<span class="c1"># grad arrays should be shared by all executor groups</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">execgrp</span><span class="o">.</span><span class="n">grad_arrays</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">aux_arrays</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Shared aux states."""</span>
<span class="c1"># aux arrays are also shared by all executor groups</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">execgrp</span><span class="o">.</span><span class="n">aux_arrays</span>
<div class="viewcode-block" id="DataParallelExecutorManager.load_data_batch"><a class="viewcode-back" href="../../api/python/executor/executor.html#mxnet.executor_manager.DataParallelExecutorManager.load_data_batch">[docs]</a> <span class="k">def</span> <span class="nf">load_data_batch</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data_batch</span><span class="p">):</span>
<span class="sd">"""Load data and labels into arrays."""</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">sym_gen</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">data_batch</span><span class="o">.</span><span class="n">bucket_key</span>
<span class="k">if</span> <span class="n">key</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">execgrp_bucket</span><span class="p">:</span>
<span class="c1"># create new bucket entry</span>
<span class="n">symbol</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sym_gen</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
<span class="n">execgrp</span> <span class="o">=</span> <span class="n">DataParallelExecutorGroup</span><span class="p">(</span><span class="n">symbol</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">arg_names</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">param_names</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">ctx</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">slices</span><span class="p">,</span> <span class="n">data_batch</span><span class="p">,</span>
<span class="n">shared_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">execgrp</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">execgrp_bucket</span><span class="p">[</span><span class="n">key</span><span class="p">]</span> <span class="o">=</span> <span class="n">execgrp</span>
<span class="bp">self</span><span class="o">.</span><span class="n">curr_execgrp</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">execgrp_bucket</span><span class="p">[</span><span class="n">key</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">curr_execgrp</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">execgrp</span>
<span class="bp">self</span><span class="o">.</span><span class="n">curr_execgrp</span><span class="o">.</span><span class="n">load_data_batch</span><span class="p">(</span><span class="n">data_batch</span><span class="p">)</span></div>
<div class="viewcode-block" id="DataParallelExecutorManager.forward"><a class="viewcode-back" href="../../api/python/executor/executor.html#mxnet.executor_manager.DataParallelExecutorManager.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">is_train</span><span class="o">=</span><span class="bp">False</span><span class="p">):</span>
<span class="sd">"""Run forward on the current executor."""</span>
<span class="bp">self</span><span class="o">.</span><span class="n">curr_execgrp</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="n">is_train</span><span class="o">=</span><span class="n">is_train</span><span class="p">)</span></div>
<div class="viewcode-block" id="DataParallelExecutorManager.backward"><a class="viewcode-back" href="../../api/python/executor/executor.html#mxnet.executor_manager.DataParallelExecutorManager.backward">[docs]</a> <span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">"""Run backward on the current executor."""</span>
<span class="bp">self</span><span class="o">.</span><span class="n">curr_execgrp</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span></div>
<div class="viewcode-block" id="DataParallelExecutorManager.update_metric"><a class="viewcode-back" href="../../api/python/executor/executor.html#mxnet.executor_manager.DataParallelExecutorManager.update_metric">[docs]</a> <span class="k">def</span> <span class="nf">update_metric</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">metric</span><span class="p">,</span> <span class="n">labels</span><span class="p">):</span>
<span class="sd">"""Update metric with the current executor."""</span>
<span class="bp">self</span><span class="o">.</span><span class="n">curr_execgrp</span><span class="o">.</span><span class="n">update_metric</span><span class="p">(</span><span class="n">metric</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span></div></div>
</pre></div>
</div>
</div>
<div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation">
<div class="sphinxsidebarwrapper">
</div>
</div>
</div><div class="footer">
<div class="section-disclaimer">
<div class="container">
<div>
<img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/>
<p>
Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF.
</p>
<p>
"Copyright © 2017, The Apache Software Foundation
Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation."
</p>
</div>
</div>
</div>
</div> <!-- pagename != index -->
</div>
<script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script>
<script src="../../_static/js/sidebar.js" type="text/javascript"></script>
<script src="../../_static/js/search.js" type="text/javascript"></script>
<script src="../../_static/js/navbar.js" type="text/javascript"></script>
<script src="../../_static/js/clipboard.min.js" type="text/javascript"></script>
<script src="../../_static/js/copycode.js" type="text/javascript"></script>
<script src="../../_static/js/page.js" type="text/javascript"></script>
<script type="text/javascript">
$('body').ready(function () {
$('body').css('visibility', 'visible');
});
</script>
</body>
</html>