| <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> |
| <html xmlns="http://www.w3.org/1999/xhtml"> |
| <head> |
| <meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/> |
| <meta http-equiv="X-UA-Compatible" content="IE=9"/> |
| <meta name="generator" content="Doxygen 1.8.11"/> |
| <title>mxnet: /work/mxnet/3rdparty/mshadow/mshadow/random.h Source File</title> |
| <link href="tabs.css" rel="stylesheet" type="text/css"/> |
| <script type="text/javascript" src="jquery.js"></script> |
| <script type="text/javascript" src="dynsections.js"></script> |
| <link href="search/search.css" rel="stylesheet" type="text/css"/> |
| <script type="text/javascript" src="search/searchdata.js"></script> |
| <script type="text/javascript" src="search/search.js"></script> |
| <script type="text/javascript"> |
| $(document).ready(function() { init_search(); }); |
| </script> |
| <link href="doxygen.css" rel="stylesheet" type="text/css" /> |
| </head> |
| <body> |
| <div id="top"><!-- do not remove this div, it is closed by doxygen! --> |
| <div id="titlearea"> |
| <table cellspacing="0" cellpadding="0"> |
| <tbody> |
| <tr style="height: 56px;"> |
| <td id="projectalign" style="padding-left: 0.5em;"> |
| <div id="projectname">mxnet |
| </div> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <!-- end header part --> |
| <!-- Generated by Doxygen 1.8.11 --> |
| <script type="text/javascript"> |
| var searchBox = new SearchBox("searchBox", "search",false,'Search'); |
| </script> |
| <div id="navrow1" class="tabs"> |
| <ul class="tablist"> |
| <li><a href="index.html"><span>Main Page</span></a></li> |
| <li><a href="modules.html"><span>Modules</span></a></li> |
| <li><a href="namespaces.html"><span>Namespaces</span></a></li> |
| <li><a href="annotated.html"><span>Classes</span></a></li> |
| <li class="current"><a href="files.html"><span>Files</span></a></li> |
| <li> |
| <div id="MSearchBox" class="MSearchBoxInactive"> |
| <span class="left"> |
| <img id="MSearchSelect" src="search/mag_sel.png" |
| onmouseover="return searchBox.OnSearchSelectShow()" |
| onmouseout="return searchBox.OnSearchSelectHide()" |
| alt=""/> |
| <input type="text" id="MSearchField" value="Search" accesskey="S" |
| onfocus="searchBox.OnSearchFieldFocus(true)" |
| onblur="searchBox.OnSearchFieldFocus(false)" |
| onkeyup="searchBox.OnSearchFieldChange(event)"/> |
| </span><span class="right"> |
| <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a> |
| </span> |
| </div> |
| </li> |
| </ul> |
| </div> |
| <div id="navrow2" class="tabs2"> |
| <ul class="tablist"> |
| <li><a href="files.html"><span>File List</span></a></li> |
| <li><a href="globals.html"><span>File Members</span></a></li> |
| </ul> |
| </div> |
| <!-- window showing the filter options --> |
| <div id="MSearchSelectWindow" |
| onmouseover="return searchBox.OnSearchSelectShow()" |
| onmouseout="return searchBox.OnSearchSelectHide()" |
| onkeydown="return searchBox.OnSearchSelectKey(event)"> |
| </div> |
| |
| <!-- iframe showing the search results (closed by default) --> |
| <div id="MSearchResultsWindow"> |
| <iframe src="javascript:void(0)" frameborder="0" |
| name="MSearchResults" id="MSearchResults"> |
| </iframe> |
| </div> |
| |
| <div id="nav-path" class="navpath"> |
| <ul> |
| <li class="navelem"><a class="el" href="dir_8cab8f464681f7cc51cee77e79a434cd.html">3rdparty</a></li><li class="navelem"><a class="el" href="dir_3e48ced36faa4eaa1b41f6d960bf0edb.html">mshadow</a></li><li class="navelem"><a class="el" href="dir_00b035bb2ad81894e6ad291054ea5f82.html">mshadow</a></li> </ul> |
| </div> |
| </div><!-- top --> |
| <div class="header"> |
| <div class="headertitle"> |
| <div class="title">random.h</div> </div> |
| </div><!--header--> |
| <div class="contents"> |
| <a href="random_8h.html">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span> </div><div class="line"><a name="l00008"></a><span class="lineno"> 8</span> <span class="preprocessor">#ifndef MSHADOW_RANDOM_H_</span></div><div class="line"><a name="l00009"></a><span class="lineno"> 9</span> <span class="preprocessor">#define MSHADOW_RANDOM_H_</span></div><div class="line"><a name="l00010"></a><span class="lineno"> 10</span> </div><div class="line"><a name="l00011"></a><span class="lineno"> 11</span> <span class="preprocessor">#include <cstdlib></span></div><div class="line"><a name="l00012"></a><span class="lineno"> 12</span> <span class="preprocessor">#include <algorithm></span></div><div class="line"><a name="l00013"></a><span class="lineno"> 13</span> <span class="preprocessor">#include <random></span></div><div class="line"><a name="l00014"></a><span class="lineno"> 14</span> <span class="preprocessor">#include "<a class="code" href="3rdparty_2mshadow_2mshadow_2base_8h.html">./base.h</a>"</span></div><div class="line"><a name="l00015"></a><span class="lineno"> 15</span> <span class="preprocessor">#include "<a class="code" href="mshadow_2mshadow_2tensor_8h.html">./tensor.h</a>"</span></div><div class="line"><a name="l00016"></a><span class="lineno"> 16</span> <span class="preprocessor">#include "<a class="code" href="tensor__container_8h.html">./tensor_container.h</a>"</span></div><div class="line"><a name="l00017"></a><span class="lineno"> 17</span> </div><div class="line"><a name="l00018"></a><span class="lineno"> 18</span> <span class="preprocessor">#if MSHADOW_IN_CXX11</span></div><div class="line"><a name="l00019"></a><span class="lineno"> 19</span> <span class="preprocessor">#include <random></span> <span class="comment">// use cxx11 random by default</span></div><div class="line"><a name="l00020"></a><span class="lineno"> 20</span> <span class="preprocessor">#endif</span></div><div class="line"><a name="l00021"></a><span class="lineno"> 21</span> </div><div class="line"><a name="l00022"></a><span class="lineno"> 22</span> <span class="preprocessor">#if _MSC_VER</span></div><div class="line"><a name="l00023"></a><span class="lineno"> 23</span> <span class="preprocessor">#define rand_r(x) rand()</span></div><div class="line"><a name="l00024"></a><span class="lineno"> 24</span> <span class="preprocessor">#endif</span></div><div class="line"><a name="l00025"></a><span class="lineno"> 25</span> </div><div class="line"><a name="l00026"></a><span class="lineno"> 26</span> </div><div class="line"><a name="l00027"></a><span class="lineno"> 27</span> <span class="keyword">namespace </span><a class="code" href="namespacemshadow.html">mshadow</a> {</div><div class="line"><a name="l00033"></a><span class="lineno"> 33</span> <span class="keyword">template</span><<span class="keyword">typename</span> Device, <span class="keyword">typename</span> DType MSHADOW_DEFAULT_DTYPE></div><div class="line"><a name="l00034"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random.html"> 34</a></span> <span class="keyword">class </span><a class="code" href="classmshadow_1_1Random.html">Random</a> {};</div><div class="line"><a name="l00035"></a><span class="lineno"> 35</span> </div><div class="line"><a name="l00037"></a><span class="lineno"> 37</span> <span class="keyword">template</span><<span class="keyword">typename</span> DType></div><div class="line"><a name="l00038"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html"> 38</a></span> <span class="keyword">class </span><a class="code" href="classmshadow_1_1Random.html">Random</a><<a class="code" href="structmshadow_1_1cpu.html">cpu</a>, DType> {</div><div class="line"><a name="l00039"></a><span class="lineno"> 39</span>  <span class="keyword">public</span>:</div><div class="line"><a name="l00044"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a468829a8a58919ec4aadb1e75a6174ff"> 44</a></span>  <span class="keyword">explicit</span> <a class="code" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a468829a8a58919ec4aadb1e75a6174ff">Random</a>(<span class="keywordtype">int</span> seed) {</div><div class="line"><a name="l00045"></a><span class="lineno"> 45</span>  this->Seed(seed);</div><div class="line"><a name="l00046"></a><span class="lineno"> 46</span>  buffer_.Resize(<a class="code" href="namespacemshadow.html#a05e468ef4d8882fccce53ae951b7bdbd">Shape1</a>(<a class="code" href="namespacemshadow.html#ac4cba6b672478463350f7d84b47e99e3">kRandBufferSize</a>));</div><div class="line"><a name="l00047"></a><span class="lineno"> 47</span>  }</div><div class="line"><a name="l00048"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a37b7e8cbe08d7c0f6699039cc0bad8b2"> 48</a></span>  <a class="code" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a37b7e8cbe08d7c0f6699039cc0bad8b2">~Random</a>(<span class="keywordtype">void</span>) {</div><div class="line"><a name="l00049"></a><span class="lineno"> 49</span>  }</div><div class="line"><a name="l00054"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#aff2ec8923288cea076f5fa94897c0bfe"> 54</a></span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#aff2ec8923288cea076f5fa94897c0bfe">Seed</a>(<span class="keywordtype">int</span> seed) {</div><div class="line"><a name="l00055"></a><span class="lineno"> 55</span> <span class="preprocessor">#if MSHADOW_IN_CXX11</span></div><div class="line"><a name="l00056"></a><span class="lineno"> 56</span>  rnd_engine_.seed(seed);</div><div class="line"><a name="l00057"></a><span class="lineno"> 57</span> <span class="preprocessor">#endif</span></div><div class="line"><a name="l00058"></a><span class="lineno"> 58</span>  this->rseed_ = <span class="keyword">static_cast<</span><span class="keywordtype">unsigned</span><span class="keyword">></span>(seed);</div><div class="line"><a name="l00059"></a><span class="lineno"> 59</span>  }</div><div class="line"><a name="l00064"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a3f8cdfe67076940b082c87ebf49954fc"> 64</a></span>  <span class="keyword">inline</span> <span class="keywordtype">unsigned</span> <a class="code" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a3f8cdfe67076940b082c87ebf49954fc">GetSeed</a>()<span class="keyword"> const </span>{</div><div class="line"><a name="l00065"></a><span class="lineno"> 65</span>  <span class="keywordflow">return</span> rseed_;</div><div class="line"><a name="l00066"></a><span class="lineno"> 66</span>  }</div><div class="line"><a name="l00071"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a0096231388917db869409e0f587b1cf3"> 71</a></span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a0096231388917db869409e0f587b1cf3">set_stream</a>(<a class="code" href="structmshadow_1_1Stream.html">Stream<cpu></a> *stream) {</div><div class="line"><a name="l00072"></a><span class="lineno"> 72</span>  }</div><div class="line"><a name="l00073"></a><span class="lineno"> 73</span> </div><div class="line"><a name="l00074"></a><span class="lineno"> 74</span> <span class="comment">// These samplers are only avail in C++11.</span></div><div class="line"><a name="l00075"></a><span class="lineno"> 75</span> <span class="preprocessor">#if MSHADOW_IN_CXX11</span></div><div class="line"><a name="l00076"></a><span class="lineno"> 76</span> </div><div class="line"><a name="l00081"></a><span class="lineno"> 81</span>  <span class="keyword">inline</span> <span class="keywordtype">unsigned</span> GetRandInt() {</div><div class="line"><a name="l00082"></a><span class="lineno"> 82</span>  <span class="keywordflow">return</span> rnd_engine_();</div><div class="line"><a name="l00083"></a><span class="lineno"> 83</span>  }</div><div class="line"><a name="l00084"></a><span class="lineno"> 84</span> </div><div class="line"><a name="l00088"></a><span class="lineno"> 88</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> GetRandInt(<span class="keyword">const</span> <a class="code" href="structmshadow_1_1Tensor.html">Tensor<cpu, 1, unsigned></a>& dst) {</div><div class="line"><a name="l00089"></a><span class="lineno"> 89</span>  std::generate_n(dst.<a class="code" href="structmshadow_1_1Tensor.html#ad86d6759c585efb5229b3a0659973838">dptr_</a>, dst.<a class="code" href="structmshadow_1_1Tensor.html#a70426dc2b379d3ecf4604785732b39b3">size</a>(0), [&](){ <span class="keywordflow">return</span> rnd_engine_(); });</div><div class="line"><a name="l00090"></a><span class="lineno"> 90</span>  }</div><div class="line"><a name="l00091"></a><span class="lineno"> 91</span> </div><div class="line"><a name="l00098"></a><span class="lineno"> 98</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim, <span class="keyword">class</span> Sampler></div><div class="line"><a name="l00099"></a><span class="lineno"> 99</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> SampleDistribution(<a class="code" href="structmshadow_1_1Tensor.html">Tensor<cpu, dim, DType></a> *dst, Sampler sampler) {</div><div class="line"><a name="l00100"></a><span class="lineno"> 100</span>  <span class="keywordflow">if</span> (dst-><a class="code" href="structmshadow_1_1Tensor.html#af33152a6bec96ff692e12843dc5d01f1">CheckContiguous</a>()) {</div><div class="line"><a name="l00101"></a><span class="lineno"> 101</span>  std::generate_n(dst-><a class="code" href="structmshadow_1_1Tensor.html#ad86d6759c585efb5229b3a0659973838">dptr_</a>, dst-><a class="code" href="structmshadow_1_1Tensor.html#ad10c7414c5948e789e8761df2083c4e5">shape_</a>.Size(), sampler);</div><div class="line"><a name="l00102"></a><span class="lineno"> 102</span>  } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00103"></a><span class="lineno"> 103</span>  <a class="code" href="structmshadow_1_1Tensor.html">Tensor<cpu, 2, DType></a> mat = dst-><a class="code" href="structmshadow_1_1Tensor.html#a47f6ef317e9521fc6b7af5a3c25e53db">FlatTo2D</a>();</div><div class="line"><a name="l00104"></a><span class="lineno"> 104</span>  <span class="keywordflow">for</span> (<a class="code" href="namespacemshadow.html#adcbc2e1131386fccb1474b0bdf045926">index_t</a> i = 0; i < mat.<a class="code" href="structmshadow_1_1Tensor.html#a70426dc2b379d3ecf4604785732b39b3">size</a>(0); ++i) {</div><div class="line"><a name="l00105"></a><span class="lineno"> 105</span>  std::generate_n(mat[i].dptr_, mat.<a class="code" href="structmshadow_1_1Tensor.html#a70426dc2b379d3ecf4604785732b39b3">size</a>(1), sampler);</div><div class="line"><a name="l00106"></a><span class="lineno"> 106</span>  }</div><div class="line"><a name="l00107"></a><span class="lineno"> 107</span>  }</div><div class="line"><a name="l00108"></a><span class="lineno"> 108</span>  }</div><div class="line"><a name="l00109"></a><span class="lineno"> 109</span> </div><div class="line"><a name="l00117"></a><span class="lineno"> 117</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim, <span class="keyword">typename</span> PType></div><div class="line"><a name="l00118"></a><span class="lineno"> 118</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="namespacemxnet.html#a2846f4556c9ca9bd0f567504ce60f274">SampleUniform</a>(<a class="code" href="structmshadow_1_1Tensor.html">Tensor<cpu, dim, DType></a> *dst,</div><div class="line"><a name="l00119"></a><span class="lineno"> 119</span>  PType a = 0.0f , PType b = 1.0f ) {</div><div class="line"><a name="l00120"></a><span class="lineno"> 120</span>  <span class="comment">// Ensure that half_t is handled correctly.</span></div><div class="line"><a name="l00121"></a><span class="lineno"> 121</span>  <span class="keyword">typedef</span> <span class="keyword">typename</span> std::conditional<std::is_floating_point<DType>::value,</div><div class="line"><a name="l00122"></a><span class="lineno"> 122</span>  DType, <span class="keywordtype">double</span>>::type FType;</div><div class="line"><a name="l00123"></a><span class="lineno"> 123</span>  <span class="keyword">typedef</span> <span class="keyword">typename</span> std::conditional<std::is_integral<DType>::value,</div><div class="line"><a name="l00124"></a><span class="lineno"> 124</span>  std::uniform_int_distribution<DType>,</div><div class="line"><a name="l00125"></a><span class="lineno"> 125</span>  std::uniform_real_distribution<FType>>::type GType;</div><div class="line"><a name="l00126"></a><span class="lineno"> 126</span>  GType dist_uniform(a, b);</div><div class="line"><a name="l00127"></a><span class="lineno"> 127</span>  SampleDistribution(dst, [&](){ <span class="keywordflow">return</span> dist_uniform(rnd_engine_);});</div><div class="line"><a name="l00128"></a><span class="lineno"> 128</span>  }</div><div class="line"><a name="l00129"></a><span class="lineno"> 129</span> </div><div class="line"><a name="l00137"></a><span class="lineno"> 137</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim, <span class="keyword">typename</span> PType></div><div class="line"><a name="l00138"></a><span class="lineno"> 138</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="namespacemxnet.html#a5a28062f52ca576a126599e7ad487077">SampleGaussian</a>(<a class="code" href="structmshadow_1_1Tensor.html">Tensor<cpu, dim, DType></a> *dst,</div><div class="line"><a name="l00139"></a><span class="lineno"> 139</span>  PType mu = 0.0f, PType sigma = 1.0f ) {</div><div class="line"><a name="l00140"></a><span class="lineno"> 140</span>  <span class="keywordflow">if</span> (sigma <= 0) {</div><div class="line"><a name="l00141"></a><span class="lineno"> 141</span>  *dst = mu; <span class="keywordflow">return</span>;</div><div class="line"><a name="l00142"></a><span class="lineno"> 142</span>  }</div><div class="line"><a name="l00143"></a><span class="lineno"> 143</span>  <span class="keyword">typedef</span> <span class="keyword">typename</span> std::conditional<std::is_floating_point<DType>::value,</div><div class="line"><a name="l00144"></a><span class="lineno"> 144</span>  DType, <span class="keywordtype">double</span>>::type GType;</div><div class="line"><a name="l00145"></a><span class="lineno"> 145</span>  std::normal_distribution<GType> dist_normal(mu, sigma);</div><div class="line"><a name="l00146"></a><span class="lineno"> 146</span>  SampleDistribution(dst, [&](){ <span class="keywordflow">return</span> dist_normal(rnd_engine_);});</div><div class="line"><a name="l00147"></a><span class="lineno"> 147</span>  }</div><div class="line"><a name="l00148"></a><span class="lineno"> 148</span> </div><div class="line"><a name="l00156"></a><span class="lineno"> 156</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim, <span class="keyword">typename</span> PType></div><div class="line"><a name="l00157"></a><span class="lineno"> 157</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="namespacemxnet.html#a050beaa505f11e0b844deb91efe0cac2">SampleGamma</a>(<a class="code" href="structmshadow_1_1Tensor.html">Tensor<cpu, dim, DType></a> *dst,</div><div class="line"><a name="l00158"></a><span class="lineno"> 158</span>  PType alpha, PType beta) {</div><div class="line"><a name="l00159"></a><span class="lineno"> 159</span>  <span class="keyword">typedef</span> <span class="keyword">typename</span> std::conditional<std::is_floating_point<DType>::value,</div><div class="line"><a name="l00160"></a><span class="lineno"> 160</span>  DType, <span class="keywordtype">double</span>>::type GType;</div><div class="line"><a name="l00161"></a><span class="lineno"> 161</span>  std::gamma_distribution<GType> dist_gamma(alpha, beta);</div><div class="line"><a name="l00162"></a><span class="lineno"> 162</span>  SampleDistribution(dst, [&](){ <span class="keywordflow">return</span> dist_gamma(rnd_engine_);});</div><div class="line"><a name="l00163"></a><span class="lineno"> 163</span>  }</div><div class="line"><a name="l00164"></a><span class="lineno"> 164</span> </div><div class="line"><a name="l00171"></a><span class="lineno"> 171</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim, <span class="keyword">typename</span> PType></div><div class="line"><a name="l00172"></a><span class="lineno"> 172</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="namespacemxnet.html#a51f9b094369a349c05463de2be9f0a31">SampleExponential</a>(<a class="code" href="structmshadow_1_1Tensor.html">Tensor<cpu, dim, DType></a> *dst, PType lambda ) {</div><div class="line"><a name="l00173"></a><span class="lineno"> 173</span>  <span class="keyword">typedef</span> <span class="keyword">typename</span> std::conditional<std::is_floating_point<DType>::value,</div><div class="line"><a name="l00174"></a><span class="lineno"> 174</span>  DType, <span class="keywordtype">double</span>>::type GType;</div><div class="line"><a name="l00175"></a><span class="lineno"> 175</span>  std::exponential_distribution<GType> dist_exp(lambda);</div><div class="line"><a name="l00176"></a><span class="lineno"> 176</span>  SampleDistribution(dst, [&](){ <span class="keywordflow">return</span> dist_exp(rnd_engine_);});</div><div class="line"><a name="l00177"></a><span class="lineno"> 177</span>  }</div><div class="line"><a name="l00178"></a><span class="lineno"> 178</span> </div><div class="line"><a name="l00185"></a><span class="lineno"> 185</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim, <span class="keyword">typename</span> PType></div><div class="line"><a name="l00186"></a><span class="lineno"> 186</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="namespacemxnet.html#aed55e8197182b7c66126902b2a43739a">SamplePoisson</a>(<a class="code" href="structmshadow_1_1Tensor.html">Tensor<cpu, dim, DType></a> *dst, PType lambda) {</div><div class="line"><a name="l00187"></a><span class="lineno"> 187</span>  <span class="keyword">typedef</span> <span class="keyword">typename</span> std::conditional<std::is_integral<DType>::value, DType, <span class="keywordtype">int</span>>::type GType;</div><div class="line"><a name="l00188"></a><span class="lineno"> 188</span>  std::poisson_distribution<GType> dist_poisson(lambda);</div><div class="line"><a name="l00189"></a><span class="lineno"> 189</span>  SampleDistribution(dst, [&](){ <span class="keywordflow">return</span> <span class="keyword">static_cast<</span>DType<span class="keyword">></span>(dist_poisson(rnd_engine_));});</div><div class="line"><a name="l00190"></a><span class="lineno"> 190</span>  }</div><div class="line"><a name="l00191"></a><span class="lineno"> 191</span> </div><div class="line"><a name="l00199"></a><span class="lineno"> 199</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim, <span class="keyword">typename</span> PType1, <span class="keyword">typename</span> PType2></div><div class="line"><a name="l00200"></a><span class="lineno"> 200</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> SampleNegativeBinomial(<a class="code" href="structmshadow_1_1Tensor.html">Tensor<cpu, dim, DType></a> *dst, PType1 k, PType2 p) {</div><div class="line"><a name="l00201"></a><span class="lineno"> 201</span>  <span class="keyword">typedef</span> <span class="keyword">typename</span> std::conditional<std::is_integral<DType>::value, DType, <span class="keywordtype">int</span>>::type GType;</div><div class="line"><a name="l00202"></a><span class="lineno"> 202</span>  std::negative_binomial_distribution<GType> dist_negbinomial(k, p);</div><div class="line"><a name="l00203"></a><span class="lineno"> 203</span>  SampleDistribution(dst, [&](){ <span class="keywordflow">return</span> <span class="keyword">static_cast<</span>DType<span class="keyword">></span>(dist_negbinomial(rnd_engine_));});</div><div class="line"><a name="l00204"></a><span class="lineno"> 204</span>  }</div><div class="line"><a name="l00205"></a><span class="lineno"> 205</span> </div><div class="line"><a name="l00214"></a><span class="lineno"> 214</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim, <span class="keyword">typename</span> PType></div><div class="line"><a name="l00215"></a><span class="lineno"> 215</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> SampleGeneralizedNegativeBinomial(<a class="code" href="structmshadow_1_1Tensor.html">Tensor<cpu, dim, DType></a> *dst,</div><div class="line"><a name="l00216"></a><span class="lineno"> 216</span>  PType mu, PType alpha) {</div><div class="line"><a name="l00217"></a><span class="lineno"> 217</span>  <span class="keywordflow">if</span> (alpha == PType(0)) {</div><div class="line"><a name="l00218"></a><span class="lineno"> 218</span>  <a class="code" href="namespacemxnet.html#aed55e8197182b7c66126902b2a43739a">SamplePoisson</a>(dst, mu); <span class="comment">// limit of Poisson</span></div><div class="line"><a name="l00219"></a><span class="lineno"> 219</span>  } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00220"></a><span class="lineno"> 220</span>  PType r(PType(1) / alpha);</div><div class="line"><a name="l00221"></a><span class="lineno"> 221</span>  PType beta = mu * alpha;</div><div class="line"><a name="l00222"></a><span class="lineno"> 222</span>  std::gamma_distribution<> dist_gamma(r, beta);</div><div class="line"><a name="l00223"></a><span class="lineno"> 223</span>  <span class="keyword">typedef</span> <span class="keyword">typename</span> std::conditional<std::is_integral<DType>::value, DType, <span class="keywordtype">int</span>>::type GType;</div><div class="line"><a name="l00224"></a><span class="lineno"> 224</span>  SampleDistribution(dst,</div><div class="line"><a name="l00225"></a><span class="lineno"> 225</span>  [&](){ std::poisson_distribution<GType> dist_poisson(dist_gamma(rnd_engine_));</div><div class="line"><a name="l00226"></a><span class="lineno"> 226</span>  <span class="keywordflow">return</span> <span class="keyword">static_cast<</span>DType<span class="keyword">></span>(dist_poisson(rnd_engine_));});</div><div class="line"><a name="l00227"></a><span class="lineno"> 227</span>  }</div><div class="line"><a name="l00228"></a><span class="lineno"> 228</span>  }</div><div class="line"><a name="l00229"></a><span class="lineno"> 229</span> <span class="preprocessor">#endif</span></div><div class="line"><a name="l00230"></a><span class="lineno"> 230</span> </div><div class="line"><a name="l00242"></a><span class="lineno"> 242</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim></div><div class="line"><a name="l00243"></a><span class="lineno"> 243</span>  <span class="keyword">inline</span> <a class="code" href="structmshadow_1_1expr_1_1ReshapeExp.html">expr::ReshapeExp<Tensor<cpu, 1, DType></a>, DType, dim, 1></div><div class="line"><a name="l00244"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a4ca9b27ca3752795017372a05cfce5c3"> 244</a></span>  <a class="code" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a4ca9b27ca3752795017372a05cfce5c3">gaussian</a>(<a class="code" href="structmshadow_1_1Shape.html">Shape<dim></a> shape) {</div><div class="line"><a name="l00245"></a><span class="lineno"> 245</span>  buffer_.Resize(<a class="code" href="namespacemshadow.html#a05e468ef4d8882fccce53ae951b7bdbd">Shape1</a>(shape.<a class="code" href="structmshadow_1_1Shape.html#ab327e7f2b80218fb80540af884dfc35f">Size</a>()));</div><div class="line"><a name="l00246"></a><span class="lineno"> 246</span>  this-><a class="code" href="namespacemxnet.html#a5a28062f52ca576a126599e7ad487077">SampleGaussian</a>(&buffer_, 0.0f, 1.0f);</div><div class="line"><a name="l00247"></a><span class="lineno"> 247</span>  <span class="keywordflow">return</span> <a class="code" href="namespacemshadow_1_1expr.html#a73862619baed02a20e49897decf13fc2">expr::reshape</a>(buffer_, shape);</div><div class="line"><a name="l00248"></a><span class="lineno"> 248</span>  }</div><div class="line"><a name="l00260"></a><span class="lineno"> 260</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim></div><div class="line"><a name="l00261"></a><span class="lineno"> 261</span>  <span class="keyword">inline</span> expr::ReshapeExp<Tensor<cpu, 1, DType>, DType, dim, 1></div><div class="line"><a name="l00262"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a4eae04b06525d65b839f2c9c5428c436"> 262</a></span>  <a class="code" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a4eae04b06525d65b839f2c9c5428c436">uniform</a>(<a class="code" href="structmshadow_1_1Shape.html">Shape<dim></a> shape) {</div><div class="line"><a name="l00263"></a><span class="lineno"> 263</span>  buffer_.Resize(<a class="code" href="namespacemshadow.html#a05e468ef4d8882fccce53ae951b7bdbd">Shape1</a>(shape.<a class="code" href="structmshadow_1_1Shape.html#ab327e7f2b80218fb80540af884dfc35f">Size</a>()));</div><div class="line"><a name="l00264"></a><span class="lineno"> 264</span>  this-><a class="code" href="namespacemxnet.html#a2846f4556c9ca9bd0f567504ce60f274">SampleUniform</a>(&buffer_, 0.0f, 1.0f);</div><div class="line"><a name="l00265"></a><span class="lineno"> 265</span>  <span class="keywordflow">return</span> <a class="code" href="namespacemshadow_1_1expr.html#a73862619baed02a20e49897decf13fc2">expr::reshape</a>(buffer_, shape);</div><div class="line"><a name="l00266"></a><span class="lineno"> 266</span>  }</div><div class="line"><a name="l00267"></a><span class="lineno"> 267</span> </div><div class="line"><a name="l00268"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a02bf4cce9c068da452494452432fcf7f"> 268</a></span>  std::mt19937 &<a class="code" href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a02bf4cce9c068da452494452432fcf7f">GetRndEngine</a>() {</div><div class="line"><a name="l00269"></a><span class="lineno"> 269</span>  <span class="keywordflow">return</span> rnd_engine_;</div><div class="line"><a name="l00270"></a><span class="lineno"> 270</span>  }</div><div class="line"><a name="l00271"></a><span class="lineno"> 271</span> </div><div class="line"><a name="l00272"></a><span class="lineno"> 272</span>  <span class="keyword">private</span>:</div><div class="line"><a name="l00273"></a><span class="lineno"> 273</span> <span class="preprocessor">#if MSHADOW_IN_CXX11</span></div><div class="line"><a name="l00274"></a><span class="lineno"> 274</span> </div><div class="line"><a name="l00275"></a><span class="lineno"> 275</span>  std::mt19937 rnd_engine_;</div><div class="line"><a name="l00277"></a><span class="lineno"> 277</span>  <span class="keywordtype">unsigned</span> rseed_;</div><div class="line"><a name="l00278"></a><span class="lineno"> 278</span> </div><div class="line"><a name="l00279"></a><span class="lineno"> 279</span> <span class="preprocessor">#else</span></div><div class="line"><a name="l00280"></a><span class="lineno"> 280</span> </div><div class="line"><a name="l00282"></a><span class="lineno"> 282</span>  <span class="keywordtype">unsigned</span> rseed_;</div><div class="line"><a name="l00283"></a><span class="lineno"> 283</span>  <span class="comment">// functions</span></div><div class="line"><a name="l00284"></a><span class="lineno"> 284</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim></div><div class="line"><a name="l00285"></a><span class="lineno"> 285</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="namespacemxnet.html#a2846f4556c9ca9bd0f567504ce60f274">SampleUniform</a>(<a class="code" href="structmshadow_1_1Tensor.html">Tensor<cpu, dim, DType></a> *dst,</div><div class="line"><a name="l00286"></a><span class="lineno"> 286</span>  DType a = 0.0f, DType b = 1.0f) {</div><div class="line"><a name="l00287"></a><span class="lineno"> 287</span>  <span class="keywordflow">if</span> (dst-><a class="code" href="structmshadow_1_1Tensor.html#af33152a6bec96ff692e12843dc5d01f1">CheckContiguous</a>()) {</div><div class="line"><a name="l00288"></a><span class="lineno"> 288</span>  this->GenUniform(dst-><a class="code" href="structmshadow_1_1Tensor.html#ad86d6759c585efb5229b3a0659973838">dptr_</a>, dst-><a class="code" href="structmshadow_1_1Tensor.html#ad10c7414c5948e789e8761df2083c4e5">shape_</a>.Size(), a, b);</div><div class="line"><a name="l00289"></a><span class="lineno"> 289</span>  } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00290"></a><span class="lineno"> 290</span>  <a class="code" href="structmshadow_1_1Tensor.html">Tensor<cpu, 2, DType></a> mat = dst-><a class="code" href="structmshadow_1_1Tensor.html#a47f6ef317e9521fc6b7af5a3c25e53db">FlatTo2D</a>();</div><div class="line"><a name="l00291"></a><span class="lineno"> 291</span>  <span class="keywordflow">for</span> (<a class="code" href="namespacemshadow.html#adcbc2e1131386fccb1474b0bdf045926">index_t</a> i = 0; i < mat.<a class="code" href="structmshadow_1_1Tensor.html#a70426dc2b379d3ecf4604785732b39b3">size</a>(0); ++i) {</div><div class="line"><a name="l00292"></a><span class="lineno"> 292</span>  this->GenUniform(mat[i].dptr_, mat.<a class="code" href="structmshadow_1_1Tensor.html#a70426dc2b379d3ecf4604785732b39b3">size</a>(1), a, b);</div><div class="line"><a name="l00293"></a><span class="lineno"> 293</span>  }</div><div class="line"><a name="l00294"></a><span class="lineno"> 294</span>  }</div><div class="line"><a name="l00295"></a><span class="lineno"> 295</span>  }</div><div class="line"><a name="l00296"></a><span class="lineno"> 296</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim></div><div class="line"><a name="l00297"></a><span class="lineno"> 297</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="namespacemxnet.html#a5a28062f52ca576a126599e7ad487077">SampleGaussian</a>(<a class="code" href="structmshadow_1_1Tensor.html">Tensor<cpu, dim, DType></a> *dst,</div><div class="line"><a name="l00298"></a><span class="lineno"> 298</span>  DType mu = 0.0f, DType sigma = 1.0f) {</div><div class="line"><a name="l00299"></a><span class="lineno"> 299</span>  <span class="keywordflow">if</span> (sigma <= 0.0f) {</div><div class="line"><a name="l00300"></a><span class="lineno"> 300</span>  *dst = mu; <span class="keywordflow">return</span>;</div><div class="line"><a name="l00301"></a><span class="lineno"> 301</span>  }</div><div class="line"><a name="l00302"></a><span class="lineno"> 302</span>  <span class="keywordflow">if</span> (dst-><a class="code" href="structmshadow_1_1Tensor.html#af33152a6bec96ff692e12843dc5d01f1">CheckContiguous</a>()) {</div><div class="line"><a name="l00303"></a><span class="lineno"> 303</span>  this->GenGaussian(dst-><a class="code" href="structmshadow_1_1Tensor.html#ad86d6759c585efb5229b3a0659973838">dptr_</a>, dst-><a class="code" href="structmshadow_1_1Tensor.html#ad10c7414c5948e789e8761df2083c4e5">shape_</a>.Size(), mu, sigma);</div><div class="line"><a name="l00304"></a><span class="lineno"> 304</span>  } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00305"></a><span class="lineno"> 305</span>  <a class="code" href="structmshadow_1_1Tensor.html">Tensor<cpu, 2, DType></a> mat = dst-><a class="code" href="structmshadow_1_1Tensor.html#a47f6ef317e9521fc6b7af5a3c25e53db">FlatTo2D</a>();</div><div class="line"><a name="l00306"></a><span class="lineno"> 306</span>  <span class="keywordflow">for</span> (<a class="code" href="namespacemshadow.html#adcbc2e1131386fccb1474b0bdf045926">index_t</a> i = 0; i < mat.<a class="code" href="structmshadow_1_1Tensor.html#a70426dc2b379d3ecf4604785732b39b3">size</a>(0); ++i) {</div><div class="line"><a name="l00307"></a><span class="lineno"> 307</span>  this->GenGaussian(mat[i].dptr_, mat.<a class="code" href="structmshadow_1_1Tensor.html#a70426dc2b379d3ecf4604785732b39b3">size</a>(1), mu, sigma);</div><div class="line"><a name="l00308"></a><span class="lineno"> 308</span>  }</div><div class="line"><a name="l00309"></a><span class="lineno"> 309</span>  }</div><div class="line"><a name="l00310"></a><span class="lineno"> 310</span>  }</div><div class="line"><a name="l00311"></a><span class="lineno"> 311</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> GenUniform(<span class="keywordtype">float</span> *dptr, <a class="code" href="namespacemshadow.html#adcbc2e1131386fccb1474b0bdf045926">index_t</a> size, <span class="keywordtype">float</span> a, <span class="keywordtype">float</span> b) {</div><div class="line"><a name="l00312"></a><span class="lineno"> 312</span>  <span class="keywordflow">for</span> (<a class="code" href="namespacemshadow.html#adcbc2e1131386fccb1474b0bdf045926">index_t</a> j = 0; j < size; ++j) {</div><div class="line"><a name="l00313"></a><span class="lineno"> 313</span>  dptr[j] = <span class="keyword">static_cast<</span><span class="keywordtype">float</span><span class="keyword">></span>(RandNext()) * (b - a) + a;</div><div class="line"><a name="l00314"></a><span class="lineno"> 314</span>  }</div><div class="line"><a name="l00315"></a><span class="lineno"> 315</span>  }</div><div class="line"><a name="l00316"></a><span class="lineno"> 316</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> GenUniform(<span class="keywordtype">double</span> *dptr, <a class="code" href="namespacemshadow.html#adcbc2e1131386fccb1474b0bdf045926">index_t</a> size, <span class="keywordtype">double</span> a, <span class="keywordtype">double</span> b) {</div><div class="line"><a name="l00317"></a><span class="lineno"> 317</span>  <span class="keywordflow">for</span> (<a class="code" href="namespacemshadow.html#adcbc2e1131386fccb1474b0bdf045926">index_t</a> j = 0; j < size; ++j) {</div><div class="line"><a name="l00318"></a><span class="lineno"> 318</span>  dptr[j] = <span class="keyword">static_cast<</span><span class="keywordtype">double</span><span class="keyword">></span>(RandNext()) * (b - a) + a;</div><div class="line"><a name="l00319"></a><span class="lineno"> 319</span>  }</div><div class="line"><a name="l00320"></a><span class="lineno"> 320</span>  }</div><div class="line"><a name="l00321"></a><span class="lineno"> 321</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> GenGaussian(<span class="keywordtype">float</span> *dptr, <a class="code" href="namespacemshadow.html#adcbc2e1131386fccb1474b0bdf045926">index_t</a> size, <span class="keywordtype">float</span> mu, <span class="keywordtype">float</span> sigma) {</div><div class="line"><a name="l00322"></a><span class="lineno"> 322</span>  this->GenGaussianX(dptr, size, mu, sigma);</div><div class="line"><a name="l00323"></a><span class="lineno"> 323</span>  }</div><div class="line"><a name="l00324"></a><span class="lineno"> 324</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> GenGaussian(<span class="keywordtype">double</span> *dptr, <a class="code" href="namespacemshadow.html#adcbc2e1131386fccb1474b0bdf045926">index_t</a> size, <span class="keywordtype">double</span> mu, <span class="keywordtype">double</span> sigma) {</div><div class="line"><a name="l00325"></a><span class="lineno"> 325</span>  this->GenGaussianX(dptr, size, mu, sigma);</div><div class="line"><a name="l00326"></a><span class="lineno"> 326</span>  }</div><div class="line"><a name="l00327"></a><span class="lineno"> 327</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> GenGaussianX(DType *dptr, <a class="code" href="namespacemshadow.html#adcbc2e1131386fccb1474b0bdf045926">index_t</a> size, DType mu, DType sigma) {</div><div class="line"><a name="l00328"></a><span class="lineno"> 328</span>  DType g1 = 0.0f, g2 = 0.0f;</div><div class="line"><a name="l00329"></a><span class="lineno"> 329</span>  <span class="keywordflow">for</span> (<a class="code" href="namespacemshadow.html#adcbc2e1131386fccb1474b0bdf045926">index_t</a> j = 0; j < size; ++j) {</div><div class="line"><a name="l00330"></a><span class="lineno"> 330</span>  <span class="keywordflow">if</span> ((j & 1) == 0) {</div><div class="line"><a name="l00331"></a><span class="lineno"> 331</span>  this->SampleNormal2D(&g1, &g2);</div><div class="line"><a name="l00332"></a><span class="lineno"> 332</span>  dptr[j] = mu + g1 * sigma;</div><div class="line"><a name="l00333"></a><span class="lineno"> 333</span>  } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00334"></a><span class="lineno"> 334</span>  dptr[j] = mu + g2 * sigma;</div><div class="line"><a name="l00335"></a><span class="lineno"> 335</span>  }</div><div class="line"><a name="l00336"></a><span class="lineno"> 336</span>  }</div><div class="line"><a name="l00337"></a><span class="lineno"> 337</span>  }</div><div class="line"><a name="l00339"></a><span class="lineno"> 339</span>  <span class="keyword">inline</span> DType RandNext(<span class="keywordtype">void</span>) {</div><div class="line"><a name="l00340"></a><span class="lineno"> 340</span>  <span class="keywordflow">return</span> <span class="keyword">static_cast<</span>DType<span class="keyword">></span>(rand_r(&rseed_)) /</div><div class="line"><a name="l00341"></a><span class="lineno"> 341</span>  (static_cast<DType>(RAND_MAX) + 1.0f);</div><div class="line"><a name="l00342"></a><span class="lineno"> 342</span>  }</div><div class="line"><a name="l00344"></a><span class="lineno"> 344</span>  <span class="keyword">inline</span> DType RandNext2(<span class="keywordtype">void</span>) {</div><div class="line"><a name="l00345"></a><span class="lineno"> 345</span>  <span class="keywordflow">return</span> (static_cast<DType>(rand_r(&rseed_)) + 1.0f) /</div><div class="line"><a name="l00346"></a><span class="lineno"> 346</span>  (<span class="keyword">static_cast<</span>DType<span class="keyword">></span>(RAND_MAX) + 2.0f);</div><div class="line"><a name="l00347"></a><span class="lineno"> 347</span>  }</div><div class="line"><a name="l00353"></a><span class="lineno"> 353</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> SampleNormal2D(DType *xx_, DType *yy_) {</div><div class="line"><a name="l00354"></a><span class="lineno"> 354</span>  DType &xx = *xx_, &yy = *yy_;</div><div class="line"><a name="l00355"></a><span class="lineno"> 355</span>  DType x, y, s;</div><div class="line"><a name="l00356"></a><span class="lineno"> 356</span>  <span class="keywordflow">do</span> {</div><div class="line"><a name="l00357"></a><span class="lineno"> 357</span>  x = 2.0f * RandNext2() - 1.0f;</div><div class="line"><a name="l00358"></a><span class="lineno"> 358</span>  y = 2.0f * RandNext2() - 1.0f;</div><div class="line"><a name="l00359"></a><span class="lineno"> 359</span>  s = x * x + y * y;</div><div class="line"><a name="l00360"></a><span class="lineno"> 360</span>  } <span class="keywordflow">while</span> (s >= 1.0f || s == 0.0f);</div><div class="line"><a name="l00361"></a><span class="lineno"> 361</span>  DType t = std::sqrt(-2.0f * std::log(s) / s);</div><div class="line"><a name="l00362"></a><span class="lineno"> 362</span>  xx = x * t; yy = y * t;</div><div class="line"><a name="l00363"></a><span class="lineno"> 363</span>  }</div><div class="line"><a name="l00364"></a><span class="lineno"> 364</span> <span class="preprocessor">#endif</span></div><div class="line"><a name="l00365"></a><span class="lineno"> 365</span> </div><div class="line"><a name="l00366"></a><span class="lineno"> 366</span>  <a class="code" href="classmshadow_1_1TensorContainer.html">TensorContainer<cpu, 1, DType></a> buffer_;</div><div class="line"><a name="l00367"></a><span class="lineno"> 367</span> }; <span class="comment">// class Random<cpu, DType></span></div><div class="line"><a name="l00368"></a><span class="lineno"> 368</span> </div><div class="line"><a name="l00369"></a><span class="lineno"> 369</span> <span class="comment">// only allow GPU PRNG when cuda is enabled</span></div><div class="line"><a name="l00370"></a><span class="lineno"> 370</span> <span class="preprocessor">#if MSHADOW_USE_CUDA</span></div><div class="line"><a name="l00371"></a><span class="lineno"> 371</span> </div><div class="line"><a name="l00372"></a><span class="lineno"> 372</span> <span class="keyword">template</span><<span class="keyword">typename</span> DType></div><div class="line"><a name="l00373"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html"> 373</a></span> <span class="keyword">class </span><a class="code" href="classmshadow_1_1Random.html">Random</a><<a class="code" href="structmshadow_1_1gpu.html">gpu</a>, DType> {</div><div class="line"><a name="l00374"></a><span class="lineno"> 374</span>  <span class="keyword">public</span>:</div><div class="line"><a name="l00379"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#a47236e16630bfafbf207d1ac57547b18"> 379</a></span>  <span class="keyword">explicit</span> <a class="code" href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#a47236e16630bfafbf207d1ac57547b18">Random</a>(<span class="keywordtype">int</span> seed) : gen_(NULL) {</div><div class="line"><a name="l00380"></a><span class="lineno"> 380</span>  this->Seed(seed);</div><div class="line"><a name="l00381"></a><span class="lineno"> 381</span>  buffer_.Resize(<a class="code" href="namespacemshadow.html#a05e468ef4d8882fccce53ae951b7bdbd">Shape1</a>(<a class="code" href="namespacemshadow.html#ac4cba6b672478463350f7d84b47e99e3">kRandBufferSize</a>));</div><div class="line"><a name="l00382"></a><span class="lineno"> 382</span>  }</div><div class="line"><a name="l00383"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#a6600fb034b3c840dd568458b9cea397c"> 383</a></span>  <a class="code" href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#a6600fb034b3c840dd568458b9cea397c">~Random</a>(<span class="keywordtype">void</span>) <a class="code" href="3rdparty_2mshadow_2mshadow_2base_8h.html#a53a342d1f8cc22d36ed49e4c51c19f0c">MSHADOW_THROW_EXCEPTION</a> {</div><div class="line"><a name="l00384"></a><span class="lineno"> 384</span>  DeleteGenerator();</div><div class="line"><a name="l00385"></a><span class="lineno"> 385</span>  }</div><div class="line"><a name="l00390"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#ac813f60f1d2d7c7e5cd4a4cc15068667"> 390</a></span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#ac813f60f1d2d7c7e5cd4a4cc15068667">set_stream</a>(<a class="code" href="structmshadow_1_1Stream_3_01gpu_01_4.html">Stream<gpu></a> *stream) {</div><div class="line"><a name="l00391"></a><span class="lineno"> 391</span>  curandStatus_t status;</div><div class="line"><a name="l00392"></a><span class="lineno"> 392</span>  status = curandSetStream(gen_, <a class="code" href="structmshadow_1_1Stream.html">Stream<gpu>::GetStream</a>(stream));</div><div class="line"><a name="l00393"></a><span class="lineno"> 393</span> </div><div class="line"><a name="l00394"></a><span class="lineno"> 394</span>  CHECK_EQ(status, CURAND_STATUS_SUCCESS) << <span class="stringliteral">"set_stream CURAND failed"</span>;</div><div class="line"><a name="l00395"></a><span class="lineno"> 395</span>  }</div><div class="line"><a name="l00400"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#a997d28fe4cfa9a1f36b88160ce61ec9a"> 400</a></span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#a997d28fe4cfa9a1f36b88160ce61ec9a">Seed</a>(<span class="keywordtype">int</span> seed) {</div><div class="line"><a name="l00401"></a><span class="lineno"> 401</span>  <span class="comment">// Create a new rng, either initially or if the RNG type can't reset its offset.</span></div><div class="line"><a name="l00402"></a><span class="lineno"> 402</span>  <span class="keywordflow">if</span> (gen_ == NULL || (curandSetGeneratorOffset(gen_, 0ULL) != CURAND_STATUS_SUCCESS))</div><div class="line"><a name="l00403"></a><span class="lineno"> 403</span>  CreateGenerator();</div><div class="line"><a name="l00404"></a><span class="lineno"> 404</span>  <span class="comment">// Now set the seed.</span></div><div class="line"><a name="l00405"></a><span class="lineno"> 405</span>  curandStatus_t status;</div><div class="line"><a name="l00406"></a><span class="lineno"> 406</span>  status = curandSetPseudoRandomGeneratorSeed(gen_, static_cast<uint64_t>(seed));</div><div class="line"><a name="l00407"></a><span class="lineno"> 407</span>  CHECK_EQ(status, CURAND_STATUS_SUCCESS) << <span class="stringliteral">"Set CURAND seed failed."</span>;</div><div class="line"><a name="l00408"></a><span class="lineno"> 408</span>  }</div><div class="line"><a name="l00412"></a><span class="lineno"><a class="line" href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#a8c3a2f7df5bc62093b4a55b9d42bb60e"> 412</a></span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#a8c3a2f7df5bc62093b4a55b9d42bb60e">GetRandInt</a>(<span class="keyword">const</span> <a class="code" href="structmshadow_1_1Tensor.html">Tensor<gpu, 1, unsigned></a>& dst) {</div><div class="line"><a name="l00413"></a><span class="lineno"> 413</span>  curandStatus_t status = curandGenerate(gen_, dst.<a class="code" href="structmshadow_1_1Tensor.html#ad86d6759c585efb5229b3a0659973838">dptr_</a>, dst.<a class="code" href="structmshadow_1_1Tensor.html#a70426dc2b379d3ecf4604785732b39b3">size</a>(0));</div><div class="line"><a name="l00414"></a><span class="lineno"> 414</span>  CHECK_EQ(status, CURAND_STATUS_SUCCESS) << <span class="stringliteral">"CURAND Gen rand ints failed."</span>;</div><div class="line"><a name="l00415"></a><span class="lineno"> 415</span>  }</div><div class="line"><a name="l00423"></a><span class="lineno"> 423</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim></div><div class="line"><a name="l00424"></a><span class="lineno"> 424</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="namespacemxnet.html#a2846f4556c9ca9bd0f567504ce60f274">SampleUniform</a>(<a class="code" href="structmshadow_1_1Tensor.html">Tensor<gpu, dim, DType></a> *dst,</div><div class="line"><a name="l00425"></a><span class="lineno"> 425</span>  DType a = 0.0f, DType b = 1.0f);</div><div class="line"><a name="l00426"></a><span class="lineno"> 426</span> </div><div class="line"><a name="l00434"></a><span class="lineno"> 434</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim></div><div class="line"><a name="l00435"></a><span class="lineno"> 435</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="namespacemxnet.html#a5a28062f52ca576a126599e7ad487077">SampleGaussian</a>(<a class="code" href="structmshadow_1_1Tensor.html">Tensor<gpu, dim, DType></a> *dst,</div><div class="line"><a name="l00436"></a><span class="lineno"> 436</span>  DType mu = 0.0f, DType sigma = 1.0f);</div><div class="line"><a name="l00450"></a><span class="lineno"> 450</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim></div><div class="line"><a name="l00451"></a><span class="lineno"> 451</span>  <span class="keyword">inline</span> <a class="code" href="structmshadow_1_1expr_1_1ReshapeExp.html">expr::ReshapeExp<Tensor<gpu, 1, DType></a>, DType, dim, 1></div><div class="line"><a name="l00452"></a><span class="lineno"> 452</span>  gaussian(<a class="code" href="structmshadow_1_1Shape.html">Shape<dim></a> shape, DType mu = 0.0f, DType sigma = 1.0f);</div><div class="line"><a name="l00464"></a><span class="lineno"> 464</span>  <span class="keyword">template</span><<span class="keywordtype">int</span> dim></div><div class="line"><a name="l00465"></a><span class="lineno"> 465</span>  <span class="keyword">inline</span> expr::ReshapeExp<Tensor<gpu, 1, DType>, DType, dim, 1></div><div class="line"><a name="l00466"></a><span class="lineno"> 466</span>  uniform(<a class="code" href="structmshadow_1_1Shape.html">Shape<dim></a> shape);</div><div class="line"><a name="l00467"></a><span class="lineno"> 467</span> </div><div class="line"><a name="l00468"></a><span class="lineno"> 468</span>  <span class="keyword">private</span>:</div><div class="line"><a name="l00469"></a><span class="lineno"> 469</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> GenGaussian(<span class="keywordtype">float</span> *dptr, <span class="keywordtype">size_t</span> size, <span class="keywordtype">float</span> mu, <span class="keywordtype">float</span> sigma) {</div><div class="line"><a name="l00470"></a><span class="lineno"> 470</span>  curandStatus_t status;</div><div class="line"><a name="l00471"></a><span class="lineno"> 471</span>  status = curandGenerateNormal(gen_, dptr, size, mu, sigma);</div><div class="line"><a name="l00472"></a><span class="lineno"> 472</span>  CHECK_EQ(status, CURAND_STATUS_SUCCESS) << <span class="stringliteral">"CURAND Gen Normal float failed."</span></div><div class="line"><a name="l00473"></a><span class="lineno"> 473</span>  << <span class="stringliteral">" size = "</span> << size</div><div class="line"><a name="l00474"></a><span class="lineno"> 474</span>  << <span class="stringliteral">",mu = "</span> << mu</div><div class="line"><a name="l00475"></a><span class="lineno"> 475</span>  << <span class="stringliteral">",sigma = "</span> << sigma;</div><div class="line"><a name="l00476"></a><span class="lineno"> 476</span>  }</div><div class="line"><a name="l00477"></a><span class="lineno"> 477</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> GenGaussian(<span class="keywordtype">double</span> *dptr, <span class="keywordtype">size_t</span> size, <span class="keywordtype">double</span> mu, <span class="keywordtype">double</span> sigma) {</div><div class="line"><a name="l00478"></a><span class="lineno"> 478</span>  curandStatus_t status;</div><div class="line"><a name="l00479"></a><span class="lineno"> 479</span>  status = curandGenerateNormalDouble(gen_, dptr, size, mu, sigma);</div><div class="line"><a name="l00480"></a><span class="lineno"> 480</span>  CHECK_EQ(status, CURAND_STATUS_SUCCESS) << <span class="stringliteral">"CURAND Gen Normal double failed."</span></div><div class="line"><a name="l00481"></a><span class="lineno"> 481</span>  << <span class="stringliteral">" size = "</span> << size</div><div class="line"><a name="l00482"></a><span class="lineno"> 482</span>  << <span class="stringliteral">",mu = "</span> << mu</div><div class="line"><a name="l00483"></a><span class="lineno"> 483</span>  << <span class="stringliteral">",sigma = "</span> << sigma;</div><div class="line"><a name="l00484"></a><span class="lineno"> 484</span>  }</div><div class="line"><a name="l00485"></a><span class="lineno"> 485</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> GenUniform(<span class="keywordtype">float</span> *dptr, <span class="keywordtype">size_t</span> size) {</div><div class="line"><a name="l00486"></a><span class="lineno"> 486</span>  curandStatus_t status;</div><div class="line"><a name="l00487"></a><span class="lineno"> 487</span>  status = curandGenerateUniform(gen_, dptr, size);</div><div class="line"><a name="l00488"></a><span class="lineno"> 488</span>  CHECK_EQ(status, CURAND_STATUS_SUCCESS) << <span class="stringliteral">"CURAND Gen Uniform float failed."</span></div><div class="line"><a name="l00489"></a><span class="lineno"> 489</span>  << <span class="stringliteral">" size = "</span> << size;</div><div class="line"><a name="l00490"></a><span class="lineno"> 490</span>  }</div><div class="line"><a name="l00491"></a><span class="lineno"> 491</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> GenUniform(<span class="keywordtype">double</span> *dptr, <span class="keywordtype">size_t</span> size) {</div><div class="line"><a name="l00492"></a><span class="lineno"> 492</span>  curandStatus_t status;</div><div class="line"><a name="l00493"></a><span class="lineno"> 493</span>  status = curandGenerateUniformDouble(gen_, dptr, size);</div><div class="line"><a name="l00494"></a><span class="lineno"> 494</span>  CHECK_EQ(status, CURAND_STATUS_SUCCESS) << <span class="stringliteral">"CURAND Gen Uniform double failed."</span></div><div class="line"><a name="l00495"></a><span class="lineno"> 495</span>  << <span class="stringliteral">" size = "</span> << size;</div><div class="line"><a name="l00496"></a><span class="lineno"> 496</span>  }</div><div class="line"><a name="l00497"></a><span class="lineno"> 497</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> CreateGenerator() {</div><div class="line"><a name="l00498"></a><span class="lineno"> 498</span>  <span class="keywordflow">if</span> (gen_ != NULL)</div><div class="line"><a name="l00499"></a><span class="lineno"> 499</span>  DeleteGenerator();</div><div class="line"><a name="l00500"></a><span class="lineno"> 500</span>  curandStatus_t status;</div><div class="line"><a name="l00501"></a><span class="lineno"> 501</span>  status = curandCreateGenerator(&gen_, CURAND_RNG_PSEUDO_DEFAULT);</div><div class="line"><a name="l00502"></a><span class="lineno"> 502</span>  CHECK_EQ(status, CURAND_STATUS_SUCCESS) << <span class="stringliteral">"Cannot create CURAND Generator"</span>;</div><div class="line"><a name="l00503"></a><span class="lineno"> 503</span>  }</div><div class="line"><a name="l00504"></a><span class="lineno"> 504</span>  <span class="keyword">inline</span> <span class="keywordtype">void</span> DeleteGenerator() {</div><div class="line"><a name="l00505"></a><span class="lineno"> 505</span>  <span class="keywordflow">if</span> (gen_ != NULL) {</div><div class="line"><a name="l00506"></a><span class="lineno"> 506</span>  curandStatus_t status;</div><div class="line"><a name="l00507"></a><span class="lineno"> 507</span>  status = curandDestroyGenerator(gen_);</div><div class="line"><a name="l00508"></a><span class="lineno"> 508</span>  CHECK_EQ(status, CURAND_STATUS_SUCCESS) << <span class="stringliteral">"Destory CURAND Gen failed"</span>;</div><div class="line"><a name="l00509"></a><span class="lineno"> 509</span>  gen_ = NULL;</div><div class="line"><a name="l00510"></a><span class="lineno"> 510</span>  }</div><div class="line"><a name="l00511"></a><span class="lineno"> 511</span>  }</div><div class="line"><a name="l00513"></a><span class="lineno"> 513</span>  curandGenerator_t gen_;</div><div class="line"><a name="l00515"></a><span class="lineno"> 515</span>  <a class="code" href="classmshadow_1_1TensorContainer.html">TensorContainer<gpu, 1, DType></a> buffer_;</div><div class="line"><a name="l00516"></a><span class="lineno"> 516</span> }; <span class="comment">// class Random<gpu, DType></span></div><div class="line"><a name="l00517"></a><span class="lineno"> 517</span> <span class="preprocessor">#endif // MSHADOW_USE_CUDA</span></div><div class="line"><a name="l00518"></a><span class="lineno"> 518</span> </div><div class="line"><a name="l00519"></a><span class="lineno"> 519</span> <span class="preprocessor">#ifdef __CUDACC__</span></div><div class="line"><a name="l00520"></a><span class="lineno"> 520</span> <span class="comment">// implementations that depends on cuda kernels</span></div><div class="line"><a name="l00521"></a><span class="lineno"> 521</span> <span class="keyword">template</span><<span class="keyword">typename</span> DType></div><div class="line"><a name="l00522"></a><span class="lineno"> 522</span> <span class="keyword">template</span><<span class="keywordtype">int</span> dim></div><div class="line"><a name="l00523"></a><span class="lineno"> 523</span> <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="namespacemxnet.html#a2846f4556c9ca9bd0f567504ce60f274">Random<gpu, DType>::SampleUniform</a>(</div><div class="line"><a name="l00524"></a><span class="lineno"> 524</span>  <a class="code" href="structmshadow_1_1Tensor.html">Tensor<gpu, dim, DType></a> *dst, DType a, DType b) {</div><div class="line"><a name="l00525"></a><span class="lineno"> 525</span>  <span class="keywordflow">if</span> (a == 0.0f && b == 1.0f) {</div><div class="line"><a name="l00526"></a><span class="lineno"> 526</span>  <span class="keywordflow">if</span> (dst-><a class="code" href="structmshadow_1_1Tensor.html#af33152a6bec96ff692e12843dc5d01f1">CheckContiguous</a>()) {</div><div class="line"><a name="l00527"></a><span class="lineno"> 527</span>  this->GenUniform(dst-><a class="code" href="structmshadow_1_1Tensor.html#ad86d6759c585efb5229b3a0659973838">dptr_</a>, dst-><a class="code" href="structmshadow_1_1Tensor.html#ad10c7414c5948e789e8761df2083c4e5">shape_</a>.Size());</div><div class="line"><a name="l00528"></a><span class="lineno"> 528</span>  } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00529"></a><span class="lineno"> 529</span>  *dst = this->uniform(dst-><a class="code" href="structmshadow_1_1Tensor.html#ad10c7414c5948e789e8761df2083c4e5">shape_</a>);</div><div class="line"><a name="l00530"></a><span class="lineno"> 530</span>  }</div><div class="line"><a name="l00531"></a><span class="lineno"> 531</span>  } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00532"></a><span class="lineno"> 532</span>  *dst = this->uniform(dst-><a class="code" href="structmshadow_1_1Tensor.html#ad10c7414c5948e789e8761df2083c4e5">shape_</a>) * (b - a) + a;</div><div class="line"><a name="l00533"></a><span class="lineno"> 533</span>  }</div><div class="line"><a name="l00534"></a><span class="lineno"> 534</span> }</div><div class="line"><a name="l00535"></a><span class="lineno"> 535</span> <span class="keyword">template</span><<span class="keyword">typename</span> DType></div><div class="line"><a name="l00536"></a><span class="lineno"> 536</span> <span class="keyword">template</span><<span class="keywordtype">int</span> dim></div><div class="line"><a name="l00537"></a><span class="lineno"> 537</span> <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="namespacemxnet.html#a5a28062f52ca576a126599e7ad487077">Random<gpu, DType>::SampleGaussian</a>(</div><div class="line"><a name="l00538"></a><span class="lineno"> 538</span>  <a class="code" href="structmshadow_1_1Tensor.html">Tensor<gpu, dim, DType></a> *dst, DType mu, DType sigma) {</div><div class="line"><a name="l00539"></a><span class="lineno"> 539</span>  <span class="comment">// We need to check whether the shape size is even since CuRand supports only normal distribution</span></div><div class="line"><a name="l00540"></a><span class="lineno"> 540</span>  <span class="comment">// generation of even number of elements.</span></div><div class="line"><a name="l00541"></a><span class="lineno"> 541</span>  <span class="keywordflow">if</span> (dst-><a class="code" href="structmshadow_1_1Tensor.html#af33152a6bec96ff692e12843dc5d01f1">CheckContiguous</a>() && (dst-><a class="code" href="structmshadow_1_1Tensor.html#ad10c7414c5948e789e8761df2083c4e5">shape_</a>.Size() % 2 == 0)) {</div><div class="line"><a name="l00542"></a><span class="lineno"> 542</span>  this->GenGaussian(dst-><a class="code" href="structmshadow_1_1Tensor.html#ad86d6759c585efb5229b3a0659973838">dptr_</a>, dst-><a class="code" href="structmshadow_1_1Tensor.html#ad10c7414c5948e789e8761df2083c4e5">shape_</a>.Size(), mu, sigma);</div><div class="line"><a name="l00543"></a><span class="lineno"> 543</span>  } <span class="keywordflow">else</span> {</div><div class="line"><a name="l00544"></a><span class="lineno"> 544</span>  *dst = this->gaussian(dst-><a class="code" href="structmshadow_1_1Tensor.html#ad10c7414c5948e789e8761df2083c4e5">shape_</a>, mu, sigma);</div><div class="line"><a name="l00545"></a><span class="lineno"> 545</span>  }</div><div class="line"><a name="l00546"></a><span class="lineno"> 546</span> }</div><div class="line"><a name="l00547"></a><span class="lineno"> 547</span> </div><div class="line"><a name="l00548"></a><span class="lineno"> 548</span> <span class="keyword">template</span><<span class="keyword">typename</span> DType></div><div class="line"><a name="l00549"></a><span class="lineno"> 549</span> <span class="keyword">template</span><<span class="keywordtype">int</span> dim></div><div class="line"><a name="l00550"></a><span class="lineno"> 550</span> <span class="keyword">inline</span> <a class="code" href="structmshadow_1_1expr_1_1ReshapeExp.html">expr::ReshapeExp<Tensor<gpu, 1, DType></a>, DType, dim, 1></div><div class="line"><a name="l00551"></a><span class="lineno"> 551</span> <a class="code" href="classmshadow_1_1Random.html">Random<gpu, DType>::gaussian</a>(<a class="code" href="structmshadow_1_1Shape.html">Shape<dim></a> shape, DType mu, DType sigma) {</div><div class="line"><a name="l00552"></a><span class="lineno"> 552</span>  <span class="keywordtype">size_t</span> aligned_sz = ((shape.<a class="code" href="structmshadow_1_1Shape.html#ab327e7f2b80218fb80540af884dfc35f">Size</a>() + 1UL) >> 1) << 1;</div><div class="line"><a name="l00553"></a><span class="lineno"> 553</span>  <span class="comment">// allocate alligned size</span></div><div class="line"><a name="l00554"></a><span class="lineno"> 554</span>  buffer_.Resize(<a class="code" href="namespacemshadow.html#a05e468ef4d8882fccce53ae951b7bdbd">Shape1</a>(aligned_sz));</div><div class="line"><a name="l00555"></a><span class="lineno"> 555</span>  buffer_.Resize(<a class="code" href="namespacemshadow.html#a05e468ef4d8882fccce53ae951b7bdbd">Shape1</a>(shape.<a class="code" href="structmshadow_1_1Shape.html#ab327e7f2b80218fb80540af884dfc35f">Size</a>()));</div><div class="line"><a name="l00556"></a><span class="lineno"> 556</span>  this->GenGaussian(buffer_.dptr_, aligned_sz, mu, sigma);</div><div class="line"><a name="l00557"></a><span class="lineno"> 557</span>  <span class="keywordflow">return</span> <a class="code" href="namespacemshadow_1_1expr.html#a73862619baed02a20e49897decf13fc2">expr::reshape</a>(buffer_, shape);</div><div class="line"><a name="l00558"></a><span class="lineno"> 558</span> }</div><div class="line"><a name="l00559"></a><span class="lineno"> 559</span> </div><div class="line"><a name="l00560"></a><span class="lineno"> 560</span> <span class="keyword">template</span><<span class="keyword">typename</span> DType></div><div class="line"><a name="l00561"></a><span class="lineno"> 561</span> <span class="keyword">template</span><<span class="keywordtype">int</span> dim></div><div class="line"><a name="l00562"></a><span class="lineno"> 562</span> <span class="keyword">inline</span> expr::ReshapeExp<Tensor<gpu, 1, DType>, DType, dim, 1></div><div class="line"><a name="l00563"></a><span class="lineno"> 563</span> <a class="code" href="classmshadow_1_1Random.html">Random<gpu, DType>::uniform</a>(<a class="code" href="structmshadow_1_1Shape.html">Shape<dim></a> shape) {</div><div class="line"><a name="l00564"></a><span class="lineno"> 564</span>  buffer_.Resize(<a class="code" href="namespacemshadow.html#a05e468ef4d8882fccce53ae951b7bdbd">Shape1</a>(shape.<a class="code" href="structmshadow_1_1Shape.html#ab327e7f2b80218fb80540af884dfc35f">Size</a>()));</div><div class="line"><a name="l00565"></a><span class="lineno"> 565</span>  this->GenUniform(buffer_.dptr_, buffer_.size(0));</div><div class="line"><a name="l00566"></a><span class="lineno"> 566</span>  <span class="keywordflow">return</span> <a class="code" href="namespacemshadow_1_1expr.html#a73862619baed02a20e49897decf13fc2">expr::reshape</a>(buffer_, shape);</div><div class="line"><a name="l00567"></a><span class="lineno"> 567</span> }</div><div class="line"><a name="l00568"></a><span class="lineno"> 568</span> <span class="preprocessor">#endif // __CUDACC__</span></div><div class="line"><a name="l00569"></a><span class="lineno"> 569</span> } <span class="comment">// namespace mshadow</span></div><div class="line"><a name="l00570"></a><span class="lineno"> 570</span> <span class="preprocessor">#endif // MSHADOW_RANDOM_H_</span></div><div class="ttc" id="classmshadow_1_1Random_3_01cpu_00_01DType_01_4_html_a4ca9b27ca3752795017372a05cfce5c3"><div class="ttname"><a href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a4ca9b27ca3752795017372a05cfce5c3">mshadow::Random< cpu, DType >::gaussian</a></div><div class="ttdeci">expr::ReshapeExp< Tensor< cpu, 1, DType >, DType, dim, 1 > gaussian(Shape< dim > shape)</div><div class="ttdoc">return a temporal expression storing standard gaussian random variables the temporal tensor is only v...</div><div class="ttdef"><b>Definition:</b> random.h:244</div></div> |
| <div class="ttc" id="classmshadow_1_1Random_html"><div class="ttname"><a href="classmshadow_1_1Random.html">mshadow::Random</a></div><div class="ttdoc">random number generator </div><div class="ttdef"><b>Definition:</b> random.h:34</div></div> |
| <div class="ttc" id="classmshadow_1_1Random_3_01gpu_00_01DType_01_4_html_a997d28fe4cfa9a1f36b88160ce61ec9a"><div class="ttname"><a href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#a997d28fe4cfa9a1f36b88160ce61ec9a">mshadow::Random< gpu, DType >::Seed</a></div><div class="ttdeci">void Seed(int seed)</div><div class="ttdoc">seed random number generator using this seed </div><div class="ttdef"><b>Definition:</b> random.h:400</div></div> |
| <div class="ttc" id="structmshadow_1_1Shape_html_ab327e7f2b80218fb80540af884dfc35f"><div class="ttname"><a href="structmshadow_1_1Shape.html#ab327e7f2b80218fb80540af884dfc35f">mshadow::Shape::Size</a></div><div class="ttdeci">MSHADOW_XINLINE index_t Size(void) const </div><div class="ttdef"><b>Definition:</b> tensor.h:126</div></div> |
| <div class="ttc" id="structmshadow_1_1Tensor_html_ad86d6759c585efb5229b3a0659973838"><div class="ttname"><a href="structmshadow_1_1Tensor.html#ad86d6759c585efb5229b3a0659973838">mshadow::Tensor::dptr_</a></div><div class="ttdeci">DType * dptr_</div><div class="ttdoc">pointer to the data </div><div class="ttdef"><b>Definition:</b> tensor.h:416</div></div> |
| <div class="ttc" id="classmshadow_1_1Random_3_01cpu_00_01DType_01_4_html_a3f8cdfe67076940b082c87ebf49954fc"><div class="ttname"><a href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a3f8cdfe67076940b082c87ebf49954fc">mshadow::Random< cpu, DType >::GetSeed</a></div><div class="ttdeci">unsigned GetSeed() const </div><div class="ttdoc">get random seed used in random generator </div><div class="ttdef"><b>Definition:</b> random.h:64</div></div> |
| <div class="ttc" id="classmshadow_1_1Random_3_01cpu_00_01DType_01_4_html_aff2ec8923288cea076f5fa94897c0bfe"><div class="ttname"><a href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#aff2ec8923288cea076f5fa94897c0bfe">mshadow::Random< cpu, DType >::Seed</a></div><div class="ttdeci">void Seed(int seed)</div><div class="ttdoc">seed random number generator using this seed </div><div class="ttdef"><b>Definition:</b> random.h:54</div></div> |
| <div class="ttc" id="structmshadow_1_1Shape_html"><div class="ttname"><a href="structmshadow_1_1Shape.html">mshadow::Shape< dim ></a></div></div> |
| <div class="ttc" id="structmshadow_1_1Stream_3_01gpu_01_4_html"><div class="ttname"><a href="structmshadow_1_1Stream_3_01gpu_01_4.html">mshadow::Stream< gpu ></a></div><div class="ttdef"><b>Definition:</b> stream_gpu-inl.h:19</div></div> |
| <div class="ttc" id="classmshadow_1_1Random_3_01gpu_00_01DType_01_4_html_a6600fb034b3c840dd568458b9cea397c"><div class="ttname"><a href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#a6600fb034b3c840dd568458b9cea397c">mshadow::Random< gpu, DType >::~Random</a></div><div class="ttdeci">~Random(void) MSHADOW_THROW_EXCEPTION</div><div class="ttdef"><b>Definition:</b> random.h:383</div></div> |
| <div class="ttc" id="structmshadow_1_1Tensor_html_ad10c7414c5948e789e8761df2083c4e5"><div class="ttname"><a href="structmshadow_1_1Tensor.html#ad10c7414c5948e789e8761df2083c4e5">mshadow::Tensor::shape_</a></div><div class="ttdeci">Shape< dimension > shape_</div><div class="ttdoc">shape of the tensor </div><div class="ttdef"><b>Definition:</b> tensor.h:418</div></div> |
| <div class="ttc" id="classmshadow_1_1Random_3_01cpu_00_01DType_01_4_html_a37b7e8cbe08d7c0f6699039cc0bad8b2"><div class="ttname"><a href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a37b7e8cbe08d7c0f6699039cc0bad8b2">mshadow::Random< cpu, DType >::~Random</a></div><div class="ttdeci">~Random(void)</div><div class="ttdef"><b>Definition:</b> random.h:48</div></div> |
| <div class="ttc" id="classmshadow_1_1Random_3_01cpu_00_01DType_01_4_html_a4eae04b06525d65b839f2c9c5428c436"><div class="ttname"><a href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a4eae04b06525d65b839f2c9c5428c436">mshadow::Random< cpu, DType >::uniform</a></div><div class="ttdeci">expr::ReshapeExp< Tensor< cpu, 1, DType >, DType, dim, 1 > uniform(Shape< dim > shape)</div><div class="ttdoc">return a temporal expression storing standard uniform [0,1) the temporal tensor is only valid before ...</div><div class="ttdef"><b>Definition:</b> random.h:262</div></div> |
| <div class="ttc" id="structmshadow_1_1cpu_html"><div class="ttname"><a href="structmshadow_1_1cpu.html">mshadow::cpu</a></div><div class="ttdoc">device name CPU </div><div class="ttdef"><b>Definition:</b> tensor.h:21</div></div> |
| <div class="ttc" id="structmshadow_1_1gpu_html"><div class="ttname"><a href="structmshadow_1_1gpu.html">mshadow::gpu</a></div><div class="ttdoc">device name GPU </div><div class="ttdef"><b>Definition:</b> tensor.h:28</div></div> |
| <div class="ttc" id="structmshadow_1_1Tensor_html_a47f6ef317e9521fc6b7af5a3c25e53db"><div class="ttname"><a href="structmshadow_1_1Tensor.html#a47f6ef317e9521fc6b7af5a3c25e53db">mshadow::Tensor::FlatTo2D</a></div><div class="ttdeci">MSHADOW_XINLINE Tensor< Device, 2, DType > FlatTo2D(void) const </div><div class="ttdoc">flatten the tensor to 2 dimension, collapse the higher dimensions together </div><div class="ttdef"><b>Definition:</b> tensor.h:501</div></div> |
| <div class="ttc" id="namespacemshadow_html_ac4cba6b672478463350f7d84b47e99e3"><div class="ttname"><a href="namespacemshadow.html#ac4cba6b672478463350f7d84b47e99e3">mshadow::kRandBufferSize</a></div><div class="ttdeci">const unsigned kRandBufferSize</div><div class="ttdoc">buffer size for each random number generator </div><div class="ttdef"><b>Definition:</b> base.h:284</div></div> |
| <div class="ttc" id="namespacemxnet_html_a51f9b094369a349c05463de2be9f0a31"><div class="ttname"><a href="namespacemxnet.html#a51f9b094369a349c05463de2be9f0a31">mxnet::SampleExponential</a></div><div class="ttdeci">void SampleExponential(real_t lambda, NDArray *out)</div><div class="ttdoc">Sample exponential distribution for each elements of out. </div></div> |
| <div class="ttc" id="namespacemshadow_html_adcbc2e1131386fccb1474b0bdf045926"><div class="ttname"><a href="namespacemshadow.html#adcbc2e1131386fccb1474b0bdf045926">mshadow::index_t</a></div><div class="ttdeci">int32_t index_t</div><div class="ttdoc">type that will be used for index </div><div class="ttdef"><b>Definition:</b> base.h:291</div></div> |
| <div class="ttc" id="namespacemshadow_1_1expr_html_a73862619baed02a20e49897decf13fc2"><div class="ttname"><a href="namespacemshadow_1_1expr.html#a73862619baed02a20e49897decf13fc2">mshadow::expr::reshape</a></div><div class="ttdeci">ReshapeExp< SrcExp, DType, dimdst, ExpInfo< SrcExp >::kDim > reshape(const Exp< SrcExp, DType, etype > &src, Shape< dimdst > oshape)</div><div class="ttdoc">a expression that reshapes a tensor to another shape </div><div class="ttdef"><b>Definition:</b> reshape.h:48</div></div> |
| <div class="ttc" id="namespacemxnet_html_a5a28062f52ca576a126599e7ad487077"><div class="ttname"><a href="namespacemxnet.html#a5a28062f52ca576a126599e7ad487077">mxnet::SampleGaussian</a></div><div class="ttdeci">void SampleGaussian(real_t mu, real_t sigma, NDArray *out)</div><div class="ttdoc">Sample gaussian distribution for each elements of out. </div></div> |
| <div class="ttc" id="classmshadow_1_1TensorContainer_html"><div class="ttname"><a href="classmshadow_1_1TensorContainer.html">mshadow::TensorContainer</a></div><div class="ttdoc">tensor container that does memory allocation and resize like STL, use it to save the lines of FreeSpa...</div><div class="ttdef"><b>Definition:</b> tensor_container.h:22</div></div> |
| <div class="ttc" id="namespacemshadow_html_a05e468ef4d8882fccce53ae951b7bdbd"><div class="ttname"><a href="namespacemshadow.html#a05e468ef4d8882fccce53ae951b7bdbd">mshadow::Shape1</a></div><div class="ttdeci">MSHADOW_XINLINE Shape< 1 > Shape1(index_t s0)</div><div class="ttdoc">construct a one dimension shape, stride will equal s0 </div><div class="ttdef"><b>Definition:</b> tensor.h:188</div></div> |
| <div class="ttc" id="classmshadow_1_1Random_3_01gpu_00_01DType_01_4_html_a8c3a2f7df5bc62093b4a55b9d42bb60e"><div class="ttname"><a href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#a8c3a2f7df5bc62093b4a55b9d42bb60e">mshadow::Random< gpu, DType >::GetRandInt</a></div><div class="ttdeci">void GetRandInt(const Tensor< gpu, 1, unsigned > &dst)</div><div class="ttdoc">get a set of random integers </div><div class="ttdef"><b>Definition:</b> random.h:412</div></div> |
| <div class="ttc" id="namespacemxnet_html_a2846f4556c9ca9bd0f567504ce60f274"><div class="ttname"><a href="namespacemxnet.html#a2846f4556c9ca9bd0f567504ce60f274">mxnet::SampleUniform</a></div><div class="ttdeci">void SampleUniform(real_t begin, real_t end, NDArray *out)</div><div class="ttdoc">Sample uniform distribution for each elements of out. </div></div> |
| <div class="ttc" id="structmshadow_1_1Tensor_html_af33152a6bec96ff692e12843dc5d01f1"><div class="ttname"><a href="structmshadow_1_1Tensor.html#af33152a6bec96ff692e12843dc5d01f1">mshadow::Tensor::CheckContiguous</a></div><div class="ttdeci">MSHADOW_XINLINE bool CheckContiguous(void) const </div><div class="ttdef"><b>Definition:</b> tensor.h:473</div></div> |
| <div class="ttc" id="structmshadow_1_1expr_1_1ReshapeExp_html"><div class="ttname"><a href="structmshadow_1_1expr_1_1ReshapeExp.html">mshadow::expr::ReshapeExp</a></div><div class="ttdoc">reshape the content to another shape input: Tensor<Device,dimsrc>: ishape output: Tensor<Device...</div><div class="ttdef"><b>Definition:</b> reshape.h:21</div></div> |
| <div class="ttc" id="classmshadow_1_1Random_3_01cpu_00_01DType_01_4_html_a02bf4cce9c068da452494452432fcf7f"><div class="ttname"><a href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a02bf4cce9c068da452494452432fcf7f">mshadow::Random< cpu, DType >::GetRndEngine</a></div><div class="ttdeci">std::mt19937 & GetRndEngine()</div><div class="ttdef"><b>Definition:</b> random.h:268</div></div> |
| <div class="ttc" id="classmshadow_1_1Random_3_01gpu_00_01DType_01_4_html_a47236e16630bfafbf207d1ac57547b18"><div class="ttname"><a href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#a47236e16630bfafbf207d1ac57547b18">mshadow::Random< gpu, DType >::Random</a></div><div class="ttdeci">Random(int seed)</div><div class="ttdoc">constructor of random engine </div><div class="ttdef"><b>Definition:</b> random.h:379</div></div> |
| <div class="ttc" id="tensor__container_8h_html"><div class="ttname"><a href="tensor__container_8h.html">tensor_container.h</a></div><div class="ttdoc">tensor container that does memory allocation and resize like STL </div></div> |
| <div class="ttc" id="classmshadow_1_1Random_3_01cpu_00_01DType_01_4_html_a0096231388917db869409e0f587b1cf3"><div class="ttname"><a href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a0096231388917db869409e0f587b1cf3">mshadow::Random< cpu, DType >::set_stream</a></div><div class="ttdeci">void set_stream(Stream< cpu > *stream)</div><div class="ttdoc">set the stream of computation </div><div class="ttdef"><b>Definition:</b> random.h:71</div></div> |
| <div class="ttc" id="classmshadow_1_1Random_3_01cpu_00_01DType_01_4_html_a468829a8a58919ec4aadb1e75a6174ff"><div class="ttname"><a href="classmshadow_1_1Random_3_01cpu_00_01DType_01_4.html#a468829a8a58919ec4aadb1e75a6174ff">mshadow::Random< cpu, DType >::Random</a></div><div class="ttdeci">Random(int seed)</div><div class="ttdoc">constructor of random engine </div><div class="ttdef"><b>Definition:</b> random.h:44</div></div> |
| <div class="ttc" id="namespacemshadow_html"><div class="ttname"><a href="namespacemshadow.html">mshadow</a></div><div class="ttdoc">namespace for mshadow </div><div class="ttdef"><b>Definition:</b> base.h:282</div></div> |
| <div class="ttc" id="3rdparty_2mshadow_2mshadow_2base_8h_html_a53a342d1f8cc22d36ed49e4c51c19f0c"><div class="ttname"><a href="3rdparty_2mshadow_2mshadow_2base_8h.html#a53a342d1f8cc22d36ed49e4c51c19f0c">MSHADOW_THROW_EXCEPTION</a></div><div class="ttdeci">#define MSHADOW_THROW_EXCEPTION</div><div class="ttdef"><b>Definition:</b> base.h:234</div></div> |
| <div class="ttc" id="structmshadow_1_1Tensor_html_a70426dc2b379d3ecf4604785732b39b3"><div class="ttname"><a href="structmshadow_1_1Tensor.html#a70426dc2b379d3ecf4604785732b39b3">mshadow::Tensor::size</a></div><div class="ttdeci">MSHADOW_XINLINE index_t size(int idx) const </div><div class="ttdoc">return size of i-th dimension, start counting from highest dimension </div><div class="ttdef"><b>Definition:</b> tensor.h:487</div></div> |
| <div class="ttc" id="structmshadow_1_1Tensor_html"><div class="ttname"><a href="structmshadow_1_1Tensor.html">mshadow::Tensor</a></div><div class="ttdoc">general tensor </div><div class="ttdef"><b>Definition:</b> tensor.h:402</div></div> |
| <div class="ttc" id="namespacemxnet_html_aed55e8197182b7c66126902b2a43739a"><div class="ttname"><a href="namespacemxnet.html#aed55e8197182b7c66126902b2a43739a">mxnet::SamplePoisson</a></div><div class="ttdeci">void SamplePoisson(real_t lambda, NDArray *out)</div><div class="ttdoc">Sample Poisson distribution for each elements of out. </div></div> |
| <div class="ttc" id="3rdparty_2mshadow_2mshadow_2base_8h_html"><div class="ttname"><a href="3rdparty_2mshadow_2mshadow_2base_8h.html">base.h</a></div></div> |
| <div class="ttc" id="classmshadow_1_1Random_3_01gpu_00_01DType_01_4_html_ac813f60f1d2d7c7e5cd4a4cc15068667"><div class="ttname"><a href="classmshadow_1_1Random_3_01gpu_00_01DType_01_4.html#ac813f60f1d2d7c7e5cd4a4cc15068667">mshadow::Random< gpu, DType >::set_stream</a></div><div class="ttdeci">void set_stream(Stream< gpu > *stream)</div><div class="ttdoc">set the stream of computation </div><div class="ttdef"><b>Definition:</b> random.h:390</div></div> |
| <div class="ttc" id="mshadow_2mshadow_2tensor_8h_html"><div class="ttname"><a href="mshadow_2mshadow_2tensor_8h.html">tensor.h</a></div></div> |
| <div class="ttc" id="namespacemxnet_html_a050beaa505f11e0b844deb91efe0cac2"><div class="ttname"><a href="namespacemxnet.html#a050beaa505f11e0b844deb91efe0cac2">mxnet::SampleGamma</a></div><div class="ttdeci">void SampleGamma(real_t alpha, real_t beta, NDArray *out)</div><div class="ttdoc">Sample gamma distribution for each elements of out. </div></div> |
| <div class="ttc" id="structmshadow_1_1Stream_html"><div class="ttname"><a href="structmshadow_1_1Stream.html">mshadow::Stream</a></div><div class="ttdoc">computaion stream structure, used for asynchronous computations </div><div class="ttdef"><b>Definition:</b> tensor.h:365</div></div> |
| </div><!-- fragment --></div><!-- contents --> |
| <!-- start footer part --> |
| <hr class="footer"/><address class="footer"><small> |
| Generated on Sat Mar 28 2020 00:52:29 for mxnet by  <a href="http://www.doxygen.org/index.html"> |
| <img class="footer" src="doxygen.png" alt="doxygen"/> |
| </a> 1.8.11 |
| </small></address> |
| </body> |
| </html> |