Bump org.apache.hadoop:hadoop-common in /mnemonic-hadoop

Bumps org.apache.hadoop:hadoop-common from 3.3.3 to 3.4.0.

---
updated-dependencies:
- dependency-name: org.apache.hadoop:hadoop-common
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
1 file changed
tree: 21975373298cb4b60d1d3919b2b564899509b2d7
  1. .devcontainer/
  2. .github/
  3. .vscode/
  4. docker/
  5. gradle/
  6. mnemonic-benches/
  7. mnemonic-collections/
  8. mnemonic-common/
  9. mnemonic-computing-services/
  10. mnemonic-core/
  11. mnemonic-examples/
  12. mnemonic-hadoop/
  13. mnemonic-memory-services/
  14. mnemonic-protocol/
  15. mnemonic-sessions/
  16. mnemonic-spark/
  17. tools/
  18. .asf.yaml
  19. .gitattributes
  20. .gitignore
  21. build.gradle
  22. gradlew
  23. gradlew.bat
  24. KEYS
  25. LICENSE
  26. NOTICE
  27. pom.xml
  28. README.md
  29. settings.gradle
README.md

================================

Mnemonic Official Website

CI

Apache Mnemonic is a non-volatile hybrid memory storage oriented library, it proposed a non-volatile/durable Java object model and durable computing service that bring several advantages to significantly improve the performance of massive real-time data processing/analytics. developers are able to use this library to design their cache-less and SerDe-less high performance applications.

Features:

  • In-place data storage on local non-volatile memory
  • Durable Object Model (DOM)
  • Durable Native Computing Model (DNCM)
  • Object graphs lazy loading & sharing
  • Auto-reclaim memory resources and Mnemonic objects
  • Hierarchical cache pool for massive data caching
  • Extensible memory services for new device adoption and allocation optimization
  • Durable data structure collection(WIP)
  • Durable computing service
  • Minimize memory footprint of on-heap
  • Reduce GC Overheads as the following chart shown (collected from Apache Spark experiments)
  • Drop-in Hadoop MapReduce support
  • Drop-in Hadoop Spark support