blob: 9d896b33c4b3e6fc2da661e7dac56d345a66223d [file] [log] [blame]
<!-- HTML header for doxygen 1.8.4-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.10"/>
<meta name="keywords" content="madlib,postgres,greenplum,machine learning,data mining,deep learning,ensemble methods,data science,market basket analysis,affinity analysis,pca,lda,regression,elastic net,huber white,proportional hazards,k-means,latent dirichlet allocation,bayes,support vector machines,svm"/>
<title>MADlib: Low-rank Matrix Factorization</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="navtreedata.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript">
$(document).ready(initResizable);
$(window).load(resizeHeight);
</script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
$(document).ready(function() { init_search(); });
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js", "TeX/AMSmath.js", "TeX/AMSsymbols.js"],
jax: ["input/TeX","output/HTML-CSS"],
});
</script><script src="../mathjax/MathJax.js"></script>
<!-- hack in the navigation tree -->
<script type="text/javascript" src="navtree_hack.js"></script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
<link href="madlib_extra.css" rel="stylesheet" type="text/css"/>
<!-- google analytics -->
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-45382226-1', 'auto');
ga('send', 'pageview');
</script>
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td id="projectlogo"><a href="http://madlib.incubator.apache.org"><img alt="Logo" src="madlib.png" height="50" style="padding-left:0.5em;" border="0"/ ></a></td>
<td style="padding-left: 0.5em;">
<div id="projectname">
<span id="projectnumber">1.8</span>
</div>
<div id="projectbrief">User Documentation for MADlib</div>
</td>
<td> <div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.png"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
</span>
</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.10 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
</div><!-- top -->
<div id="side-nav" class="ui-resizable side-nav-resizable">
<div id="nav-tree">
<div id="nav-tree-contents">
<div id="nav-sync" class="sync"></div>
</div>
</div>
<div id="splitbar" style="-moz-user-select:none;"
class="ui-resizable-handle">
</div>
</div>
<script type="text/javascript">
$(document).ready(function(){initNavTree('group__grp__lmf.html','');});
</script>
<div id="doc-content">
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
</div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<div class="header">
<div class="headertitle">
<div class="title">Low-rank Matrix Factorization<div class="ingroups"><a class="el" href="group__grp__datatrans.html">Data Types and Transforms</a> &raquo; <a class="el" href="group__grp__arraysmatrix.html">Arrays and Matrices</a> &raquo; <a class="el" href="group__grp__matrix__factorization.html">Matrix Factorization</a></div></div> </div>
</div><!--header-->
<div class="contents">
<div class="toc"><b>Contents</b> </p><ul>
<li>
<a href="#syntax">Function Syntax</a> </li>
<li>
<a href="#examples">Examples</a> </li>
<li>
<a href="#literature">Literature</a> </li>
</ul>
</div><p>This module implements "factor model" for representing an incomplete matrix using a low-rank approximation [1]. Mathematically, this model seeks to find matrices U and V (also referred as factors) that, for any given incomplete matrix A, minimizes:</p>
<p class="formulaDsp">
\[ \|\boldsymbol A - \boldsymbol UV^{T} \|_2 \]
</p>
<p>subject to \(rank(\boldsymbol UV^{T}) \leq r\), where \(\|\cdot\|_2\) denotes the Frobenius norm. Let \(A\) be a \(m \times n\) matrix, then \(U\) will be \(m \times r\) and \(V\) will be \(n \times r\), in dimension, and \(1 \leq r \ll \min(m, n)\). This model is not intended to do the full decomposition, or to be used as part of inverse procedure. This model has been widely used in recommendation systems (e.g., Netflix [2]) and feature selection (e.g., image processing [3]).</p>
<p><a class="anchor" id="syntax"></a></p><dl class="section user"><dt>Function Syntax</dt><dd></dd></dl>
<p>Low-rank matrix factorization of an incomplete matrix into two factors.</p>
<pre class="syntax">
lmf_igd_run( rel_output,
rel_source,
col_row,
col_column,
col_value,
row_dim,
column_dim,
max_rank,
stepsize,
scale_factor,
num_iterations,
tolerance
)
</pre><p> <b>Arguments</b> </p><dl class="arglist">
<dt>rel_output </dt>
<dd><p class="startdd">TEXT. The name of the table to receive the output.</p>
<p>Output factors matrix U and V are in a flattened format. </p><pre>RESULT AS (
matrix_u DOUBLE PRECISION[],
matrix_v DOUBLE PRECISION[],
rmse DOUBLE PRECISION
);</pre><p class="enddd">Features correspond to row i is <code>matrix_u[i:i][1:r]</code>. Features correspond to column j is <code>matrix_v[j:j][1:r]</code>. </p>
</dd>
<dt>rel_source </dt>
<dd><p class="startdd">TEXT. The name of the table containing the input data.</p>
<p>The input matrix&gt; is expected to be of the following form: </p><pre>{TABLE|VIEW} <em>input_table</em> (
<em>row</em> INTEGER,
<em>col</em> INTEGER,
<em>value</em> DOUBLE PRECISION
)</pre><p class="enddd">Input is contained in a table that describes an incomplete matrix, with available entries specified as (row, column, value). The input matrix should be 1-based, which means row &gt;= 1, and col &gt;= 1. NULL values are not expected. </p>
</dd>
<dt>col_row </dt>
<dd>TEXT. The name of the column containing the row number. </dd>
<dt>col_column </dt>
<dd>TEXT. The name of the column containing the column number. </dd>
<dt>col_value </dt>
<dd>DOUBLE PRECISION. The value at (row, col). </dd>
<dt>row_dim (optional) </dt>
<dd>INTEGER, default: "SELECT max(col_row) FROM rel_source". The number of columns in the matrix. </dd>
<dt>column_dim (optional) </dt>
<dd>INTEGER, default: "SELECT max(col_col) FROM rel_source". The number of rows in the matrix. </dd>
<dt>max_rank </dt>
<dd>INTEGER, default: 20. The rank of desired approximation. </dd>
<dt>stepsize (optional) </dt>
<dd>DOUBLE PRECISION, default: 0.01. Hyper-parameter that decides how aggressive the gradient steps are. </dd>
<dt>scale_factor (optional) </dt>
<dd>DOUBLE PRECISION, default: 0.1. Hyper-parameter that decides scale of initial factors. </dd>
<dt>num_iterations (optional) </dt>
<dd>INTEGER, default: 10. Maximum number if iterations to perform regardless of convergence. </dd>
<dt>tolerance (optional) </dt>
<dd>DOUBLE PRECISION, default: 0.0001. Acceptable level of error in convergence. </dd>
</dl>
<p><a class="anchor" id="examples"></a></p><dl class="section user"><dt>Examples</dt><dd></dd></dl>
<ol type="1">
<li>Prepare an input table/view: <pre class="example">
DROP TABLE IF EXISTS lmf_data;
CREATE TABLE lmf_data (
row INT,
col INT,
val FLOAT8
);
</pre></li>
<li>Populate the input table with some data. <pre class="example">
INSERT INTO lmf_data VALUES (1, 1, 5.0);
INSERT INTO lmf_data VALUES (3, 100, 1.0);
INSERT INTO lmf_data VALUES (999, 10000, 2.0);
</pre></li>
<li>Call the <a class="el" href="lmf_8sql__in.html#ac1acb1f0e1f7008118f21c83546a4602" title="Low-rank matrix factorization of a incomplete matrix into two factors. ">lmf_igd_run()</a> stored procedure. <pre class="example">
DROP TABLE IF EXISTS lmf_model;
SELECT madlib.lmf_igd_run( 'lmf_model',
'lmf_data',
'row',
'col',
'val',
999,
10000,
3,
0.1,
2,
10,
1e-9
);
</pre> Example result (the exact result may not be the same). <pre class="result">
NOTICE:
Finished low-rank matrix factorization using incremental gradient
DETAIL:
table : lmf_data (row, col, val)
Results:
RMSE = 0.0145966345300041
Output:
view : SELECT * FROM lmf_model WHERE id = 1
lmf_igd_run
&#160;-----------
1
(1 row)
</pre></li>
<li>Sanity check of the result. You may need a model id returned and also indicated by the function <a class="el" href="lmf_8sql__in.html#ac1acb1f0e1f7008118f21c83546a4602" title="Low-rank matrix factorization of a incomplete matrix into two factors. ">lmf_igd_run()</a>, assuming 1 here: <pre class="example">
SELECT array_dims(matrix_u) AS u_dims, array_dims(matrix_v) AS v_dims
FROM lmf_model
WHERE id = 1;
</pre> Result: <pre class="result">
u_dims | v_dims
--------------+----------------
[1:999][1:3] | [1:10000][1:3]
(1 row)
</pre></li>
<li>Query the result value. <pre class="example">
SELECT matrix_u[2:2][1:3] AS row_2_features
FROM lmf_model
WHERE id = 1;
</pre> Example output (the exact result may not be the same): <pre class="result">
row_2_features
&#160;---------------------------------------------------------
{{1.12030523084104,0.522217971272767,0.0264869043603539}}
(1 row)
</pre></li>
<li>Make prediction of a missing entry (row=2, col=7654). <pre class="example">
SELECT madlib.array_dot(
matrix_u[2:2][1:3],
matrix_v[7654:7654][1:3]
) AS row_2_col_7654
FROM lmf_model
WHERE id = 1;
</pre> Example output (the exact result may not be the same due the randomness of the algorithm): <pre class="result">
row_2_col_7654
&#160;------------------
1.3201582940851
(1 row)
</pre></li>
</ol>
<p><a class="anchor" id="literature"></a></p><dl class="section user"><dt>Literature</dt><dd></dd></dl>
<p>[1] N. Srebro and T. Jaakkola. “Weighted Low-Rank Approximations.” In: ICML. Ed. by T. Fawcett and N. Mishra. AAAI Press, 2003, pp. 720–727. isbn: 1-57735-189-4.</p>
<p>[2] Simon Funk, Netflix Update: Try This at Home, December 11 2006, <a href="http://sifter.org/~simon/journal/20061211.html">http://sifter.org/~simon/journal/20061211.html</a></p>
<p>[3] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. “Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization.” In: NIPS. Ed. by Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta. Curran Associates, Inc., 2009, pp. 2080–2088. isbn: 9781615679119. </p>
</div><!-- contents -->
</div><!-- doc-content -->
<!-- start footer part -->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
<ul>
<li class="footer">Generated on Mon Jul 27 2015 20:37:45 for MADlib by
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.10 </li>
</ul>
</div>
</body>
</html>