blob: cda2dd12e99afa6e1df2db97599659e3ebee8e6a [file] [log] [blame]
<!-- HTML header for doxygen 1.8.4-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.13"/>
<meta name="keywords" content="madlib,postgres,greenplum,machine learning,data mining,deep learning,ensemble methods,data science,market basket analysis,affinity analysis,pca,lda,regression,elastic net,huber white,proportional hazards,k-means,latent dirichlet allocation,bayes,support vector machines,svm"/>
<title>MADlib: Balanced Sampling</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="navtreedata.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript">
$(document).ready(initResizable);
</script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
$(document).ready(function() { init_search(); });
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js", "TeX/AMSmath.js", "TeX/AMSsymbols.js"],
jax: ["input/TeX","output/HTML-CSS"],
});
</script><script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js"></script>
<!-- hack in the navigation tree -->
<script type="text/javascript" src="eigen_navtree_hacks.js"></script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
<link href="madlib_extra.css" rel="stylesheet" type="text/css"/>
<!-- google analytics -->
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-45382226-1', 'madlib.apache.org');
ga('send', 'pageview');
</script>
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td id="projectlogo"><a href="http://madlib.apache.org"><img alt="Logo" src="madlib.png" height="50" style="padding-left:0.5em;" border="0"/ ></a></td>
<td style="padding-left: 0.5em;">
<div id="projectname">
<span id="projectnumber">1.16</span>
</div>
<div id="projectbrief">User Documentation for Apache MADlib</div>
</td>
<td> <div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.png"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
</span>
</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.13 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
</div><!-- top -->
<div id="side-nav" class="ui-resizable side-nav-resizable">
<div id="nav-tree">
<div id="nav-tree-contents">
<div id="nav-sync" class="sync"></div>
</div>
</div>
<div id="splitbar" style="-moz-user-select:none;"
class="ui-resizable-handle">
</div>
</div>
<script type="text/javascript">
$(document).ready(function(){initNavTree('group__grp__balance__sampling.html','');});
</script>
<div id="doc-content">
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
</div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<div class="header">
<div class="headertitle">
<div class="title">Balanced Sampling<div class="ingroups"><a class="el" href="group__grp__sampling.html">Sampling</a></div></div> </div>
</div><!--header-->
<div class="contents">
<div class="toc"><b>Contents</b> <ul>
<li>
<a href="#strs">Balanced Sampling</a> </li>
<li>
<a href="#examples">Examples</a> </li>
<li>
<a href="#literature">Literature</a> </li>
<li>
<a href="#related">Related Topics</a> </li>
</ul>
</div><p>Some classification algorithms only perform optimally when the number of samples in each class is roughly the same. Highly skewed datasets are common in many domains (e.g., fraud detection), so resampling to offset this imbalance can produce a better decision boundary.</p>
<p>This module offers a number of resampling techniques including undersampling majority classes, oversampling minority classes, and combinations of the two.</p>
<p><a class="anchor" id="strs"></a></p><dl class="section user"><dt>Balanced Sampling</dt><dd></dd></dl>
<pre class="syntax">
balance_sample( source_table,
output_table,
class_col,
class_sizes,
output_table_size,
grouping_cols,
with_replacement,
keep_null
)
</pre><p><b>Arguments</b> </p><dl class="arglist">
<dt>source_table </dt>
<dd><p class="startdd">TEXT. Name of the table containing the input data.</p>
<p class="enddd"></p>
</dd>
<dt>output_table </dt>
<dd><p class="startdd">TEXT. Name of output table that contains the sampled data. The output table contains all columns present in the source table, plus a new generated id called "__madlib_id__" added as the first column. </p>
<p class="enddd"></p>
</dd>
<dt>class_col </dt>
<dd><p class="startdd">TEXT, Name of the column containing the class to be balanced. </p>
<p class="enddd"></p>
</dd>
<dt>class_sizes (optional) </dt>
<dd><p class="startdd">VARCHAR, default ‘uniform’. Parameter to define the size of the different class values. (Class values are sometimes also called levels). Can be set to the following:</p>
<ul>
<li>
<b>‘uniform’</b>: All class values will be resampled to have the same number of rows. </li>
<li>
<b>'undersample'</b>: Undersample such that all class values end up with the same number of observations as the minority class. Done without replacement by default unless the parameter ‘with_replacement’ is set to TRUE. </li>
<li>
<b>'oversample'</b>: Oversample with replacement such that all class values end up with the same number of observations as the majority class. Not affected by the parameter ‘with_replacement’ since oversampling is always done with replacement. Short forms of the above will work too, e.g., 'uni' works the same as 'uniform'. </li>
</ul>
<p>Alternatively, you can also explicitly set class size in a string containing a comma-delimited list. Order does not matter and all class values do not need to be specified. Use the format “class_value_1=x, class_value_2=y, …” where 'class_value' in the list must exist in the column 'class_col'. Set to an integer representing the desired number of observations. E.g., ‘red=3000, blue=4000’ means you want to resample the dataset to result in exactly 3000 red and 4000 blue rows in the ‘output_table’. </p>
<dl class="section note"><dt>Note</dt><dd>The allowed names for class values follows object naming rules in PostgreSQL [1]. Quoted identifiers are allowed and should be enclosed in double quotes in the usual way. If for some reason the class values in the examples above were “ReD” and “BluE” then the comma delimited list for ‘class_size’ would be: ‘“ReD”=3000, “BluE”=4000’. </dd></dl>
</dd>
<dt>output_table_size (optional) </dt>
<dd><p class="startdd">INTEGER, default NULL. Desired size of the output data set. This parameter is ignored if ‘class_size’ parameter is set to either ‘oversample’ or ‘undersample’ since output table size is already determined. If NULL, the resulting output table size will depend on the settings for the ‘class_size’ parameter (see table below for more details). </p>
<p class="enddd"></p>
</dd>
<dt>grouping_cols (optional) </dt>
<dd><p class="startdd">TEXT, default: NULL. A single column or a list of comma-separated columns that defines the strata. When this parameter is NULL, no grouping is used so the sampling is non-stratified, that is, the whole table is treated as a single group.</p>
<dl class="section note"><dt>Note</dt><dd>The 'output_table_size' and the 'class_sizes' are defined for the whole table. When grouping is used, these parameters are split evenly for each group. Further, if a specific class value is specified in the 'class_sizes' parameter, that particular class value should be present in each group. If not, an error will be thrown. </dd></dl>
</dd>
<dt>with_replacement (optional) </dt>
<dd><p class="startdd">BOOLEAN, default FALSE. Determines whether to sample with replacement or without replacement (default). With replacement means that it is possible that the same row may appear in the sample set more than once. Without replacement means a given row can be selected only once. This parameter affects undersampling only since oversampling is always done with replacement.</p>
<p class="enddd"></p>
</dd>
<dt>keep_null (optional) </dt>
<dd>BOOLEAN, default FALSE. Determines whether to sample rows whose class values are NULL. By default, all rows with NULL class values are ignored. If this is set to TRUE, then NULL is treated as another class value. </dd>
</dl>
<p><b>How Output Table Size is Determined</b></p>
<p>The rule of thumb is that if you specify a value for 'output_table_size', then you will generally get an output table of that size, with some minor rounding variations. If you set 'output_table_size' to NULL, then the size of the output table will be calculated depending on what you put for the 'class_size' parameter. The following table shows how the parameters 'class_size' and 'output_table_size' work together:</p>
<table class="doxtable">
<tr>
<th align="left">Case </th><th align="left">'class_size' </th><th align="left">'output_table_size' </th><th align="left">Result </th></tr>
<tr>
<td align="left">1 </td><td align="left">'uniform' </td><td align="left">NULL </td><td align="left">Resample for uniform class size with output size = input size (i.e., balanced). </td></tr>
<tr>
<td align="left">2 </td><td align="left">'uniform' </td><td align="left">10000 </td><td align="left">Resample for uniform class size with output size = 10K (i.e., balanced). </td></tr>
<tr>
<td align="left">3 </td><td align="left">NULL </td><td align="left">NULL </td><td align="left">Resample for uniform class size with output size = input size (i.e., balanced). Class_size=NULL has same behavior as ‘uniform’. </td></tr>
<tr>
<td align="left">4 </td><td align="left">NULL </td><td align="left">10000 </td><td align="left">Resample for uniform class size with output size = 10K (i.e., balanced). Class_size=NULL has same behavior as ‘uniform’. </td></tr>
<tr>
<td align="left">5 </td><td align="left">'undersample' </td><td align="left">n/a </td><td align="left">Undersample such that all class values end up with the same number of observations as the minority. </td></tr>
<tr>
<td align="left">6 </td><td align="left">'oversample' </td><td align="left">n/a </td><td align="left">Oversample with replacement (always) such that all class values end up with the same number of observations as the majority. </td></tr>
<tr>
<td align="left">7 </td><td align="left">'red=3000' </td><td align="left">NULL </td><td align="left">Resample red to 3K, leave rest of the class values (blue, green, etc.) as is. </td></tr>
<tr>
<td align="left">8 </td><td align="left">'red=3000, blue=4000' </td><td align="left">10000 </td><td align="left">Resample red to 3K and blue to 4K, divide remaining class values evenly 3K/(n-2) each, where n=number of class values. Note that if red and blue are the only class values, then output table size will be 7K not 10K. (This is the only case where specifying a value for 'output_table_size' may not actually result in an output table of that size.) </td></tr>
</table>
<p><a class="anchor" id="examples"></a></p><dl class="section user"><dt>Examples</dt><dd></dd></dl>
<p>Note that due to the random nature of sampling, your results may look different from those below.</p>
<ol type="1">
<li>Create an input table using part of the flags data set from <a href="https://archive.ics.uci.edu/ml/datasets/Flags">https://archive.ics.uci.edu/ml/datasets/Flags</a> : <pre class="syntax">
DROP TABLE IF EXISTS flags;
CREATE TABLE flags (
id INTEGER,
name TEXT,
landmass INTEGER,
zone INTEGER,
area INTEGER,
population INTEGER,
language INTEGER,
colours INTEGER,
mainhue TEXT
);
INSERT INTO flags VALUES
(1, 'Argentina', 2, 3, 2777, 28, 2, 2, 'blue'),
(2, 'Australia', 6, 2, 7690, 15, 1, 3, 'blue'),
(3, 'Austria', 3, 1, 84, 8, 4, 2, 'red'),
(4, 'Brazil', 2, 3, 8512, 119, 6, 4, 'green'),
(5, 'Canada', 1, 4, 9976, 24, 1, 2, 'red'),
(6, 'China', 5, 1, 9561, 1008, 7, 2, 'red'),
(7, 'Denmark', 3, 1, 43, 5, 6, 2, 'red'),
(8, 'Greece', 3, 1, 132, 10, 6, 2, 'blue'),
(9, 'Guatemala', 1, 4, 109, 8, 2, 2, 'blue'),
(10, 'Ireland', 3, 4, 70, 3, 1, 3, 'white'),
(11, 'Jamaica', 1, 4, 11, 2, 1, 3, 'green'),
(12, 'Luxembourg', 3, 1, 3, 0, 4, 3, 'red'),
(13, 'Mexico', 1, 4, 1973, 77, 2, 4, 'green'),
(14, 'Norway', 3, 1, 324, 4, 6, 3, 'red'),
(15, 'Portugal', 3, 4, 92, 10, 6, 5, 'red'),
(16, 'Spain', 3, 4, 505, 38, 2, 2, 'red'),
(17, 'Sweden', 3, 1, 450, 8, 6, 2, 'blue'),
(18, 'Switzerland', 3, 1, 41, 6, 4, 2, 'red'),
(19, 'UK', 3, 4, 245, 56, 1, 3, 'red'),
(20, 'USA', 1, 4, 9363, 231, 1, 3, 'white'),
(21, 'xElba', 3, 1, 1, 1, 6, NULL, NULL),
(22, 'xPrussia', 3, 1, 249, 61, 4, NULL, NULL);
</pre></li>
<li>Uniform sampling. All class values will be resampled so that they have the same number of rows. The output data size will be the same as the input data size, ignoring NULL values. Uniform sampling is the default for the 'class_size' parameter so we do not need to explicitly set it: <pre class="syntax">
DROP TABLE IF EXISTS output_table;
SELECT madlib.balance_sample(
'flags', -- Source table
'output_table', -- Output table
'mainhue'); -- Class column
SELECT * FROM output_table ORDER BY mainhue, name;
</pre> <pre class="result">
__madlib_id__ | id | name | landmass | zone | area | population | language | colours | mainhue
---------------+----+-------------+----------+------+------+------------+----------+---------+---------
5 | 1 | Argentina | 2 | 3 | 2777 | 28 | 2 | 2 | blue
2 | 2 | Australia | 6 | 2 | 7690 | 15 | 1 | 3 | blue
3 | 8 | Greece | 3 | 1 | 132 | 10 | 6 | 2 | blue
4 | 9 | Guatemala | 1 | 4 | 109 | 8 | 2 | 2 | blue
1 | 17 | Sweden | 3 | 1 | 450 | 8 | 6 | 2 | blue
11 | 4 | Brazil | 2 | 3 | 8512 | 119 | 6 | 4 | green
12 | 4 | Brazil | 2 | 3 | 8512 | 119 | 6 | 4 | green
14 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
15 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
13 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
8 | 3 | Austria | 3 | 1 | 84 | 8 | 4 | 2 | red
10 | 5 | Canada | 1 | 4 | 9976 | 24 | 1 | 2 | red
9 | 7 | Denmark | 3 | 1 | 43 | 5 | 6 | 2 | red
6 | 15 | Portugal | 3 | 4 | 92 | 10 | 6 | 5 | red
7 | 18 | Switzerland | 3 | 1 | 41 | 6 | 4 | 2 | red
19 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
20 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
18 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
16 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
17 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
(20 rows)
</pre> Next we do uniform sampling again, but this time we specify a size for the output table: <pre class="syntax">
DROP TABLE IF EXISTS output_table;
SELECT madlib.balance_sample(
'flags', -- Source table
'output_table', -- Output table
'mainhue', -- Class column
'uniform', -- Uniform sample
12); -- Desired output table size
SELECT * FROM output_table ORDER BY mainhue, name;
</pre> <pre class="result">
__madlib_id__ | id | name | landmass | zone | area | population | language | colours | mainhue
---------------+----+-----------+----------+------+------+------------+----------+---------+---------
10 | 1 | Argentina | 2 | 3 | 2777 | 28 | 2 | 2 | blue
12 | 2 | Australia | 6 | 2 | 7690 | 15 | 1 | 3 | blue
11 | 8 | Greece | 3 | 1 | 132 | 10 | 6 | 2 | blue
2 | 4 | Brazil | 2 | 3 | 8512 | 119 | 6 | 4 | green
3 | 11 | Jamaica | 1 | 4 | 11 | 2 | 1 | 3 | green
1 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
5 | 7 | Denmark | 3 | 1 | 43 | 5 | 6 | 2 | red
6 | 14 | Norway | 3 | 1 | 324 | 4 | 6 | 3 | red
4 | 15 | Portugal | 3 | 4 | 92 | 10 | 6 | 5 | red
9 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
7 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
8 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
(12 rows)
</pre></li>
<li>Oversampling. Oversample with replacement such that all class values except NULLs end up with the same number of observations as the majority class. Countries with red flags is the majority class with 10 observations, so other class values will be oversampled to 10 observations: <pre class="syntax">
DROP TABLE IF EXISTS output_table;
SELECT madlib.balance_sample(
'flags', -- Source table
'output_table', -- Output table
'mainhue', -- Class column
'oversample'); -- Oversample
SELECT * FROM output_table ORDER BY mainhue, name;
</pre> <pre class="result">
__madlib_id__ | id | name | landmass | zone | area | population | language | colours | mainhue
---------------+----+-------------+----------+------+------+------------+----------+---------+---------
35 | 1 | Argentina | 2 | 3 | 2777 | 28 | 2 | 2 | blue
33 | 1 | Argentina | 2 | 3 | 2777 | 28 | 2 | 2 | blue
37 | 1 | Argentina | 2 | 3 | 2777 | 28 | 2 | 2 | blue
34 | 1 | Argentina | 2 | 3 | 2777 | 28 | 2 | 2 | blue
36 | 1 | Argentina | 2 | 3 | 2777 | 28 | 2 | 2 | blue
32 | 1 | Argentina | 2 | 3 | 2777 | 28 | 2 | 2 | blue
31 | 2 | Australia | 6 | 2 | 7690 | 15 | 1 | 3 | blue
39 | 9 | Guatemala | 1 | 4 | 109 | 8 | 2 | 2 | blue
38 | 9 | Guatemala | 1 | 4 | 109 | 8 | 2 | 2 | blue
40 | 17 | Sweden | 3 | 1 | 450 | 8 | 6 | 2 | blue
19 | 4 | Brazil | 2 | 3 | 8512 | 119 | 6 | 4 | green
20 | 4 | Brazil | 2 | 3 | 8512 | 119 | 6 | 4 | green
12 | 11 | Jamaica | 1 | 4 | 11 | 2 | 1 | 3 | green
11 | 11 | Jamaica | 1 | 4 | 11 | 2 | 1 | 3 | green
13 | 11 | Jamaica | 1 | 4 | 11 | 2 | 1 | 3 | green
17 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
15 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
16 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
18 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
14 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
9 | 3 | Austria | 3 | 1 | 84 | 8 | 4 | 2 | red
8 | 5 | Canada | 1 | 4 | 9976 | 24 | 1 | 2 | red
1 | 6 | China | 5 | 1 | 9561 | 1008 | 7 | 2 | red
10 | 7 | Denmark | 3 | 1 | 43 | 5 | 6 | 2 | red
2 | 12 | Luxembourg | 3 | 1 | 3 | 0 | 4 | 3 | red
4 | 14 | Norway | 3 | 1 | 324 | 4 | 6 | 3 | red
6 | 15 | Portugal | 3 | 4 | 92 | 10 | 6 | 5 | red
3 | 16 | Spain | 3 | 4 | 505 | 38 | 2 | 2 | red
5 | 18 | Switzerland | 3 | 1 | 41 | 6 | 4 | 2 | red
7 | 19 | UK | 3 | 4 | 245 | 56 | 1 | 3 | red
22 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
26 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
24 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
21 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
27 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
25 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
23 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
29 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
30 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
28 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
(40 rows)
</pre></li>
<li>Undersampling. Undersample such that all class values except NULLs end up with the same number of observations as the minority class. Countries with white flags is the minority class with 2 observations, so other class values will be undersampled to 2 observations: <pre class="syntax">
DROP TABLE IF EXISTS output_table;
SELECT madlib.balance_sample(
'flags', -- Source table
'output_table', -- Output table
'mainhue', -- Class column
'undersample'); -- Undersample
SELECT * FROM output_table ORDER BY mainhue, name;
</pre> <pre class="result">
__madlib_id__ | id | name | landmass | zone | area | population | language | colours | mainhue
---------------+----+-------------+----------+------+------+------------+----------+---------+---------
1 | 1 | Argentina | 2 | 3 | 2777 | 28 | 2 | 2 | blue
2 | 2 | Australia | 6 | 2 | 7690 | 15 | 1 | 3 | blue
4 | 4 | Brazil | 2 | 3 | 8512 | 119 | 6 | 4 | green
3 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
5 | 16 | Spain | 3 | 4 | 505 | 38 | 2 | 2 | red
6 | 18 | Switzerland | 3 | 1 | 41 | 6 | 4 | 2 | red
8 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
7 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
(8 rows)
</pre> We may also want to undersample with replacement, so we set the 'with_replacement' parameter to TRUE: <pre class="syntax">
DROP TABLE IF EXISTS output_table;
SELECT madlib.balance_sample(
'flags', -- Source table
'output_table', -- Output table
'mainhue', -- Class column
'undersample', -- Undersample
NULL, -- Output table size will be calculated
NULL, -- No grouping
'TRUE'); -- Sample with replacement
SELECT * FROM output_table ORDER BY mainhue, name;
</pre> <pre class="result">
__madlib_id__ | id | name | landmass | zone | area | population | language | colours | mainhue
---------------+----+-----------+----------+------+------+------------+----------+---------+---------
2 | 9 | Guatemala | 1 | 4 | 109 | 8 | 2 | 2 | blue
1 | 9 | Guatemala | 1 | 4 | 109 | 8 | 2 | 2 | blue
3 | 4 | Brazil | 2 | 3 | 8512 | 119 | 6 | 4 | green
4 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
6 | 5 | Canada | 1 | 4 | 9976 | 24 | 1 | 2 | red
5 | 19 | UK | 3 | 4 | 245 | 56 | 1 | 3 | red
7 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
8 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
(8 rows)
</pre> Note above that some rows may appear multiple times above since we sampled with replacement.</li>
<li>Setting class size by count. Here we set the number of rows for red and blue flags, and leave green and white flags unchanged: <pre class="syntax">
DROP TABLE IF EXISTS output_table;
SELECT madlib.balance_sample(
'flags', -- Source table
'output_table', -- Output table
'mainhue', -- Class column
'red=7, blue=7'); -- Want 7 reds and 7 blues
SELECT * FROM output_table ORDER BY mainhue, name;
</pre> <pre class="result">
__madlib_id__ | id | name | landmass | zone | area | population | language | colours | mainhue
---------------+----+------------+----------+------+------+------------+----------+---------+---------
5 | 2 | Australia | 6 | 2 | 7690 | 15 | 1 | 3 | blue
7 | 8 | Greece | 3 | 1 | 132 | 10 | 6 | 2 | blue
6 | 8 | Greece | 3 | 1 | 132 | 10 | 6 | 2 | blue
1 | 9 | Guatemala | 1 | 4 | 109 | 8 | 2 | 2 | blue
3 | 17 | Sweden | 3 | 1 | 450 | 8 | 6 | 2 | blue
2 | 17 | Sweden | 3 | 1 | 450 | 8 | 6 | 2 | blue
4 | 17 | Sweden | 3 | 1 | 450 | 8 | 6 | 2 | blue
8 | 4 | Brazil | 2 | 3 | 8512 | 119 | 6 | 4 | green
18 | 11 | Jamaica | 1 | 4 | 11 | 2 | 1 | 3 | green
19 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
13 | 3 | Austria | 3 | 1 | 84 | 8 | 4 | 2 | red
14 | 5 | Canada | 1 | 4 | 9976 | 24 | 1 | 2 | red
17 | 6 | China | 5 | 1 | 9561 | 1008 | 7 | 2 | red
15 | 12 | Luxembourg | 3 | 1 | 3 | 0 | 4 | 3 | red
16 | 14 | Norway | 3 | 1 | 324 | 4 | 6 | 3 | red
11 | 15 | Portugal | 3 | 4 | 92 | 10 | 6 | 5 | red
12 | 16 | Spain | 3 | 4 | 505 | 38 | 2 | 2 | red
9 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
10 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
(19 rows)
</pre> Next we set the number of rows for red and blue flags, and also set an output table size. This means that green and white flags will be uniformly sampled to get to the desired output table size: <pre class="syntax">
DROP TABLE IF EXISTS output_table;
SELECT madlib.balance_sample(
'flags', -- Source table
'output_table', -- Output table
'mainhue', -- Class column
'red=7, blue=7', -- Want 7 reds and 7 blues
22); -- Desired output table size
SELECT * FROM output_table ORDER BY mainhue, name;
</pre> <pre class="result">
__madlib_id__ | id | name | landmass | zone | area | population | language | colours | mainhue
---------------+----+-------------+----------+------+------+------------+----------+---------+---------
16 | 1 | Argentina | 2 | 3 | 2777 | 28 | 2 | 2 | blue
20 | 2 | Australia | 6 | 2 | 7690 | 15 | 1 | 3 | blue
21 | 2 | Australia | 6 | 2 | 7690 | 15 | 1 | 3 | blue
22 | 8 | Greece | 3 | 1 | 132 | 10 | 6 | 2 | blue
18 | 17 | Sweden | 3 | 1 | 450 | 8 | 6 | 2 | blue
19 | 17 | Sweden | 3 | 1 | 450 | 8 | 6 | 2 | blue
17 | 17 | Sweden | 3 | 1 | 450 | 8 | 6 | 2 | blue
9 | 4 | Brazil | 2 | 3 | 8512 | 119 | 6 | 4 | green
10 | 4 | Brazil | 2 | 3 | 8512 | 119 | 6 | 4 | green
8 | 11 | Jamaica | 1 | 4 | 11 | 2 | 1 | 3 | green
11 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
6 | 3 | Austria | 3 | 1 | 84 | 8 | 4 | 2 | red
7 | 5 | Canada | 1 | 4 | 9976 | 24 | 1 | 2 | red
2 | 7 | Denmark | 3 | 1 | 43 | 5 | 6 | 2 | red
1 | 12 | Luxembourg | 3 | 1 | 3 | 0 | 4 | 3 | red
3 | 15 | Portugal | 3 | 4 | 92 | 10 | 6 | 5 | red
5 | 16 | Spain | 3 | 4 | 505 | 38 | 2 | 2 | red
4 | 18 | Switzerland | 3 | 1 | 41 | 6 | 4 | 2 | red
14 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
13 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
15 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
12 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
(22 rows)
</pre></li>
<li>To make NULL a valid class value, set the parameter to keep NULLs: <pre class="syntax">
DROP TABLE IF EXISTS output_table;
SELECT madlib.balance_sample(
'flags', -- Source table
'output_table', -- Output table
'mainhue', -- Class column
NULL, -- Uniform
NULL, -- Output table size
NULL, -- No grouping
NULL, -- Sample without replacement
'TRUE'); -- Make NULLs a valid class value
SELECT * FROM output_table ORDER BY mainhue, name;
</pre> <pre class="result">
__madlib_id__ | id | name | landmass | zone | area | population | language | colours | mainhue
---------------+----+-------------+----------+------+------+------------+----------+---------+---------
25 | 1 | Argentina | 2 | 3 | 2777 | 28 | 2 | 2 | blue
22 | 2 | Australia | 6 | 2 | 7690 | 15 | 1 | 3 | blue
24 | 8 | Greece | 3 | 1 | 132 | 10 | 6 | 2 | blue
21 | 9 | Guatemala | 1 | 4 | 109 | 8 | 2 | 2 | blue
23 | 17 | Sweden | 3 | 1 | 450 | 8 | 6 | 2 | blue
7 | 4 | Brazil | 2 | 3 | 8512 | 119 | 6 | 4 | green
6 | 4 | Brazil | 2 | 3 | 8512 | 119 | 6 | 4 | green
10 | 11 | Jamaica | 1 | 4 | 11 | 2 | 1 | 3 | green
8 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
9 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
3 | 3 | Austria | 3 | 1 | 84 | 8 | 4 | 2 | red
1 | 5 | Canada | 1 | 4 | 9976 | 24 | 1 | 2 | red
2 | 16 | Spain | 3 | 4 | 505 | 38 | 2 | 2 | red
4 | 18 | Switzerland | 3 | 1 | 41 | 6 | 4 | 2 | red
5 | 19 | UK | 3 | 4 | 245 | 56 | 1 | 3 | red
13 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
11 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
14 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
12 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
15 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
17 | 21 | xElba | 3 | 1 | 1 | 1 | 6 | |
18 | 21 | xElba | 3 | 1 | 1 | 1 | 6 | |
16 | 21 | xElba | 3 | 1 | 1 | 1 | 6 | |
20 | 22 | xPrussia | 3 | 1 | 249 | 61 | 4 | |
19 | 22 | xPrussia | 3 | 1 | 249 | 61 | 4 | |
(25 rows)
</pre></li>
<li>To perform the balance sampling for independent groups, use the 'grouping_cols' parameter. Note below that each group (zone) has a different count of the classes (mainhue), with some groups not containing some class values. <pre class="syntax">
DROP TABLE IF EXISTS output_table;
SELECT madlib.balance_sample(
'flags', -- Source table
'output_table', -- Output table
'mainhue', -- Class column
NULL, -- Uniform
NULL, -- Output table size
'zone' -- Grouping by zone
);
SELECT * FROM output_table ORDER BY zone, mainhue;
</pre> <pre class="result">
__madlib_id__ | id | name | landmass | zone | area | population | language | colours | mainhue
---------------+----+-------------+----------+------+------+------------+----------+---------+---------
6 | 8 | Greece | 3 | 1 | 132 | 10 | 6 | 2 | blue
5 | 8 | Greece | 3 | 1 | 132 | 10 | 6 | 2 | blue
8 | 17 | Sweden | 3 | 1 | 450 | 8 | 6 | 2 | blue
7 | 8 | Greece | 3 | 1 | 132 | 10 | 6 | 2 | blue
2 | 7 | Denmark | 3 | 1 | 43 | 5 | 6 | 2 | red
1 | 6 | China | 5 | 1 | 9561 | 1008 | 7 | 2 | red
4 | 12 | Luxembourg | 3 | 1 | 3 | 0 | 4 | 3 | red
3 | 18 | Switzerland | 3 | 1 | 41 | 6 | 4 | 2 | red
1 | 2 | Australia | 6 | 2 | 7690 | 15 | 1 | 3 | blue
1 | 1 | Argentina | 2 | 3 | 2777 | 28 | 2 | 2 | blue
2 | 4 | Brazil | 2 | 3 | 8512 | 119 | 6 | 4 | green
6 | 9 | Guatemala | 1 | 4 | 109 | 8 | 2 | 2 | blue
5 | 9 | Guatemala | 1 | 4 | 109 | 8 | 2 | 2 | blue
4 | 9 | Guatemala | 1 | 4 | 109 | 8 | 2 | 2 | blue
12 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
10 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
11 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
1 | 19 | UK | 3 | 4 | 245 | 56 | 1 | 3 | red
3 | 5 | Canada | 1 | 4 | 9976 | 24 | 1 | 2 | red
2 | 15 | Portugal | 3 | 4 | 92 | 10 | 6 | 5 | red
8 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
7 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
9 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
(23 rows)
</pre></li>
<li>Grouping can be used with class size specification as well. Note below that 'blue=&lt;Integer&gt;' is the only valid class value since 'blue' is the only class value that is present in each group. Further, 'blue=8' will be split between the four groups, resulting in two blue rows for each group. <pre class="syntax">
DROP TABLE IF EXISTS output_table;
SELECT madlib.balance_sample(
'flags', -- Source table
'output_table', -- Output table
'mainhue', -- Class column
'blue=8', -- Specified class value size. Rest of the values are outputed as is.
NULL, -- Output table size
'zone' -- Group by zone
);
SELECT * FROM output_table ORDER BY zone, mainhue;
</pre> <pre class="result">
__madlib_id__ | id | name | landmass | zone | area | population | language | colours | mainhue
---------------+----+-------------+----------+------+------+------------+----------+---------+---------
2 | 17 | Sweden | 3 | 1 | 450 | 8 | 6 | 2 | blue
1 | 8 | Greece | 3 | 1 | 132 | 10 | 6 | 2 | blue
3 | 3 | Austria | 3 | 1 | 84 | 8 | 4 | 2 | red
5 | 7 | Denmark | 3 | 1 | 43 | 5 | 6 | 2 | red
4 | 6 | China | 5 | 1 | 9561 | 1008 | 7 | 2 | red
8 | 18 | Switzerland | 3 | 1 | 41 | 6 | 4 | 2 | red
7 | 14 | Norway | 3 | 1 | 324 | 4 | 6 | 3 | red
6 | 12 | Luxembourg | 3 | 1 | 3 | 0 | 4 | 3 | red
1 | 2 | Australia | 6 | 2 | 7690 | 15 | 1 | 3 | blue
2 | 2 | Australia | 6 | 2 | 7690 | 15 | 1 | 3 | blue
1 | 1 | Argentina | 2 | 3 | 2777 | 28 | 2 | 2 | blue
2 | 1 | Argentina | 2 | 3 | 2777 | 28 | 2 | 2 | blue
3 | 4 | Brazil | 2 | 3 | 8512 | 119 | 6 | 4 | green
2 | 9 | Guatemala | 1 | 4 | 109 | 8 | 2 | 2 | blue
1 | 9 | Guatemala | 1 | 4 | 109 | 8 | 2 | 2 | blue
5 | 11 | Jamaica | 1 | 4 | 11 | 2 | 1 | 3 | green
6 | 13 | Mexico | 1 | 4 | 1973 | 77 | 2 | 4 | green
3 | 5 | Canada | 1 | 4 | 9976 | 24 | 1 | 2 | red
7 | 15 | Portugal | 3 | 4 | 92 | 10 | 6 | 5 | red
8 | 16 | Spain | 3 | 4 | 505 | 38 | 2 | 2 | red
9 | 19 | UK | 3 | 4 | 245 | 56 | 1 | 3 | red
10 | 20 | USA | 1 | 4 | 9363 | 231 | 1 | 3 | white
4 | 10 | Ireland | 3 | 4 | 70 | 3 | 1 | 3 | white
(23 rows)
</pre></li>
</ol>
<p><a class="anchor" id="literature"></a></p><dl class="section user"><dt>Literature</dt><dd></dd></dl>
<p>[1] Object naming in PostgreSQL <a href="https://www.postgresql.org/docs/current/static/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS">https://www.postgresql.org/docs/current/static/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS</a></p>
<p><a class="anchor" id="related"></a></p><dl class="section user"><dt>Related Topics</dt><dd></dd></dl>
<p>File <a class="el" href="balance__sample_8sql__in.html" title="SQL functions for balanced data sets sampling. ">balance_sample.sql_in</a> for list of functions and usage. </p>
</div><!-- contents -->
</div><!-- doc-content -->
<!-- start footer part -->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
<ul>
<li class="footer">Generated on Tue Jul 2 2019 22:35:51 for MADlib by
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.13 </li>
</ul>
</div>
</body>
</html>