blob: 0a7f815beb325fcaa9795337cc09b8d9f28c35de [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.util.bkd;
import java.io.Closeable;
import java.io.IOException;
import java.io.UncheckedIOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.function.IntFunction;
import org.apache.lucene.codecs.CodecUtil;
import org.apache.lucene.codecs.MutablePointValues;
import org.apache.lucene.index.MergeState;
import org.apache.lucene.index.PointValues.IntersectVisitor;
import org.apache.lucene.index.PointValues.Relation;
import org.apache.lucene.store.ByteBuffersDataOutput;
import org.apache.lucene.store.ChecksumIndexInput;
import org.apache.lucene.store.DataOutput;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.IOContext;
import org.apache.lucene.store.IndexOutput;
import org.apache.lucene.store.TrackingDirectoryWrapper;
import org.apache.lucene.util.ArrayUtil;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.BytesRefBuilder;
import org.apache.lucene.util.FixedBitSet;
import org.apache.lucene.util.FutureArrays;
import org.apache.lucene.util.IOUtils;
import org.apache.lucene.util.NumericUtils;
import org.apache.lucene.util.PriorityQueue;
// TODO
// - allow variable length byte[] (across docs and dims), but this is quite a bit more hairy
// - we could also index "auto-prefix terms" here, and use better compression, and maybe only use for the "fully contained" case so we'd
// only index docIDs
// - the index could be efficiently encoded as an FST, so we don't have wasteful
// (monotonic) long[] leafBlockFPs; or we could use MonotonicLongValues ... but then
// the index is already plenty small: 60M OSM points --> 1.1 MB with 128 points
// per leaf, and you can reduce that by putting more points per leaf
// - we could use threads while building; the higher nodes are very parallelizable
/**
* Recursively builds a block KD-tree to assign all incoming points in N-dim space to smaller
* and smaller N-dim rectangles (cells) until the number of points in a given
* rectangle is &lt;= <code>config.maxPointsInLeafNode</code>. The tree is
* partially balanced, which means the leaf nodes will have
* the requested <code>config.maxPointsInLeafNode</code> except one that might have less.
* Leaf nodes may straddle the two bottom levels of the binary tree.
* Values that fall exactly on a cell boundary may be in either cell.
*
* <p>The number of dimensions can be 1 to 8, but every byte[] value is fixed length.
*
* <p>This consumes heap during writing: it allocates a <code>Long[numLeaves]</code>,
* a <code>byte[numLeaves*(1+config.bytesPerDim)]</code> and then uses up to the specified
* {@code maxMBSortInHeap} heap space for writing.
*
* <p>
* <b>NOTE</b>: This can write at most Integer.MAX_VALUE * <code>config.maxPointsInLeafNode</code> / config.bytesPerDim
* total points.
*
* @lucene.experimental */
public class BKDWriter implements Closeable {
public static final String CODEC_NAME = "BKD";
public static final int VERSION_START = 4; // version used by Lucene 7.0
//public static final int VERSION_CURRENT = VERSION_START;
public static final int VERSION_LEAF_STORES_BOUNDS = 5;
public static final int VERSION_SELECTIVE_INDEXING = 6;
public static final int VERSION_LOW_CARDINALITY_LEAVES = 7;
public static final int VERSION_META_FILE = 9;
public static final int VERSION_CURRENT = VERSION_META_FILE;
/** Number of splits before we compute the exact bounding box of an inner node. */
private static final int SPLITS_BEFORE_EXACT_BOUNDS = 4;
/** Default maximum heap to use, before spilling to (slower) disk */
public static final float DEFAULT_MAX_MB_SORT_IN_HEAP = 16.0f;
/** BKD tree configuration */
protected final BKDConfig config;
final TrackingDirectoryWrapper tempDir;
final String tempFileNamePrefix;
final double maxMBSortInHeap;
final byte[] scratchDiff;
final byte[] scratch1;
final byte[] scratch2;
final BytesRef scratchBytesRef1 = new BytesRef();
final BytesRef scratchBytesRef2 = new BytesRef();
final int[] commonPrefixLengths;
protected final FixedBitSet docsSeen;
private PointWriter pointWriter;
private boolean finished;
private IndexOutput tempInput;
private final int maxPointsSortInHeap;
/** Minimum per-dim values, packed */
protected final byte[] minPackedValue;
/** Maximum per-dim values, packed */
protected final byte[] maxPackedValue;
protected long pointCount;
/** An upper bound on how many points the caller will add (includes deletions) */
private final long totalPointCount;
private final int maxDoc;
public BKDWriter(int maxDoc, Directory tempDir, String tempFileNamePrefix, BKDConfig config,
double maxMBSortInHeap, long totalPointCount) {
verifyParams(maxMBSortInHeap, totalPointCount);
// We use tracking dir to deal with removing files on exception, so each place that
// creates temp files doesn't need crazy try/finally/sucess logic:
this.tempDir = new TrackingDirectoryWrapper(tempDir);
this.tempFileNamePrefix = tempFileNamePrefix;
this.maxMBSortInHeap = maxMBSortInHeap;
this.totalPointCount = totalPointCount;
this.maxDoc = maxDoc;
this.config = config;
docsSeen = new FixedBitSet(maxDoc);
scratchDiff = new byte[config.bytesPerDim];
scratch1 = new byte[config.packedBytesLength];
scratch2 = new byte[config.packedBytesLength];
commonPrefixLengths = new int[config.numDims];
minPackedValue = new byte[config.packedIndexBytesLength];
maxPackedValue = new byte[config.packedIndexBytesLength];
// Maximum number of points we hold in memory at any time
maxPointsSortInHeap = (int) ((maxMBSortInHeap * 1024 * 1024) / (config.bytesPerDoc));
// Finally, we must be able to hold at least the leaf node in heap during build:
if (maxPointsSortInHeap < config.maxPointsInLeafNode) {
throw new IllegalArgumentException("maxMBSortInHeap=" + maxMBSortInHeap + " only allows for maxPointsSortInHeap="
+ maxPointsSortInHeap + ", but this is less than maxPointsInLeafNode=" + config.maxPointsInLeafNode + "; "
+ "either increase maxMBSortInHeap or decrease maxPointsInLeafNode");
}
}
private static void verifyParams(double maxMBSortInHeap, long totalPointCount) {
if (maxMBSortInHeap < 0.0) {
throw new IllegalArgumentException("maxMBSortInHeap must be >= 0.0 (got: " + maxMBSortInHeap + ")");
}
if (totalPointCount < 0) {
throw new IllegalArgumentException("totalPointCount must be >=0 (got: " + totalPointCount + ")");
}
}
private void initPointWriter() throws IOException {
assert pointWriter == null : "Point writer is already initialized";
// Total point count is an estimation but the final point count must be equal or lower to that number.
if (totalPointCount > maxPointsSortInHeap) {
pointWriter = new OfflinePointWriter(config, tempDir, tempFileNamePrefix, "spill", 0);
tempInput = ((OfflinePointWriter)pointWriter).out;
} else {
pointWriter = new HeapPointWriter(config, Math.toIntExact(totalPointCount));
}
}
public void add(byte[] packedValue, int docID) throws IOException {
if (packedValue.length != config.packedBytesLength) {
throw new IllegalArgumentException("packedValue should be length=" + config.packedBytesLength + " (got: " + packedValue.length + ")");
}
if (pointCount >= totalPointCount) {
throw new IllegalStateException("totalPointCount=" + totalPointCount + " was passed when we were created, but we just hit " + (pointCount + 1) + " values");
}
if (pointCount == 0) {
initPointWriter();
System.arraycopy(packedValue, 0, minPackedValue, 0, config.packedIndexBytesLength);
System.arraycopy(packedValue, 0, maxPackedValue, 0, config.packedIndexBytesLength);
} else {
for(int dim=0;dim<config.numIndexDims;dim++) {
int offset = dim*config.bytesPerDim;
if (FutureArrays.compareUnsigned(packedValue, offset, offset + config.bytesPerDim, minPackedValue, offset, offset + config.bytesPerDim) < 0) {
System.arraycopy(packedValue, offset, minPackedValue, offset, config.bytesPerDim);
} else if (FutureArrays.compareUnsigned(packedValue, offset, offset + config.bytesPerDim, maxPackedValue, offset, offset + config.bytesPerDim) > 0) {
System.arraycopy(packedValue, offset, maxPackedValue, offset, config.bytesPerDim);
}
}
}
pointWriter.append(packedValue, docID);
pointCount++;
docsSeen.set(docID);
}
private static class MergeReader {
final BKDReader bkd;
final BKDReader.IntersectState state;
final MergeState.DocMap docMap;
/** Current doc ID */
public int docID;
/** Which doc in this block we are up to */
private int docBlockUpto;
/** How many docs in the current block */
private int docsInBlock;
/** Which leaf block we are up to */
private int blockID;
private final byte[] packedValues;
public MergeReader(BKDReader bkd, MergeState.DocMap docMap) throws IOException {
this.bkd = bkd;
state = new BKDReader.IntersectState(bkd.in.clone(),
bkd.config,
null,
null);
this.docMap = docMap;
state.in.seek(bkd.getMinLeafBlockFP());
this.packedValues = new byte[bkd.config.maxPointsInLeafNode * bkd.config.packedBytesLength];
}
public boolean next() throws IOException {
//System.out.println("MR.next this=" + this);
while (true) {
if (docBlockUpto == docsInBlock) {
if (blockID == bkd.leafNodeOffset) {
//System.out.println(" done!");
return false;
}
//System.out.println(" new block @ fp=" + state.in.getFilePointer());
docsInBlock = bkd.readDocIDs(state.in, state.in.getFilePointer(), state.scratchIterator);
assert docsInBlock > 0;
docBlockUpto = 0;
bkd.visitDocValues(state.commonPrefixLengths, state.scratchDataPackedValue, state.scratchMinIndexPackedValue, state.scratchMaxIndexPackedValue, state.in, state.scratchIterator, docsInBlock, new IntersectVisitor() {
int i = 0;
@Override
public void visit(int docID) {
throw new UnsupportedOperationException();
}
@Override
public void visit(int docID, byte[] packedValue) {
assert docID == state.scratchIterator.docIDs[i];
System.arraycopy(packedValue, 0, packedValues, i * bkd.config.packedBytesLength, bkd.config.packedBytesLength);
i++;
}
@Override
public Relation compare(byte[] minPackedValue, byte[] maxPackedValue) {
return Relation.CELL_CROSSES_QUERY;
}
});
blockID++;
}
final int index = docBlockUpto++;
int oldDocID = state.scratchIterator.docIDs[index];
int mappedDocID;
if (docMap == null) {
mappedDocID = oldDocID;
} else {
mappedDocID = docMap.get(oldDocID);
}
if (mappedDocID != -1) {
// Not deleted!
docID = mappedDocID;
System.arraycopy(packedValues, index * bkd.config.packedBytesLength, state.scratchDataPackedValue, 0, bkd.config.packedBytesLength);
return true;
}
}
}
}
private static class BKDMergeQueue extends PriorityQueue<MergeReader> {
private final int bytesPerDim;
public BKDMergeQueue(int bytesPerDim, int maxSize) {
super(maxSize);
this.bytesPerDim = bytesPerDim;
}
@Override
public boolean lessThan(MergeReader a, MergeReader b) {
assert a != b;
int cmp = FutureArrays.compareUnsigned(a.state.scratchDataPackedValue, 0, bytesPerDim, b.state.scratchDataPackedValue, 0, bytesPerDim);
if (cmp < 0) {
return true;
} else if (cmp > 0) {
return false;
}
// Tie break by sorting smaller docIDs earlier:
return a.docID < b.docID;
}
}
/** flat representation of a kd-tree */
private interface BKDTreeLeafNodes {
/** number of leaf nodes */
int numLeaves();
/** pointer to the leaf node previously written. Leaves are order from
* left to right, so leaf at {@code index} 0 is the leftmost leaf and
* the the leaf at {@code numleaves()} -1 is the rightmost leaf */
long getLeafLP(int index);
/** split value between two leaves. The split value at position n corresponds to the
* leaves at (n -1) and n. */
BytesRef getSplitValue(int index);
/** split dimension between two leaves. The split dimension at position n corresponds to the
* leaves at (n -1) and n.*/
int getSplitDimension(int index);
}
/** Write a field from a {@link MutablePointValues}. This way of writing
* points is faster than regular writes with {@link BKDWriter#add} since
* there is opportunity for reordering points before writing them to
* disk. This method does not use transient disk in order to reorder points.
*/
public Runnable writeField(IndexOutput metaOut, IndexOutput indexOut, IndexOutput dataOut, String fieldName, MutablePointValues reader) throws IOException {
if (config.numDims == 1) {
return writeField1Dim(metaOut, indexOut, dataOut, fieldName, reader);
} else {
return writeFieldNDims(metaOut, indexOut, dataOut, fieldName, reader);
}
}
private void computePackedValueBounds(MutablePointValues values, int from, int to, byte[] minPackedValue, byte[] maxPackedValue, BytesRef scratch) {
if (from == to) {
return;
}
values.getValue(from, scratch);
System.arraycopy(scratch.bytes, scratch.offset, minPackedValue, 0, config.packedIndexBytesLength);
System.arraycopy(scratch.bytes, scratch.offset, maxPackedValue, 0, config.packedIndexBytesLength);
for (int i = from + 1 ; i < to; ++i) {
values.getValue(i, scratch);
for(int dim = 0; dim < config.numIndexDims; dim++) {
final int startOffset = dim * config.bytesPerDim;
final int endOffset = startOffset + config.bytesPerDim;
if (FutureArrays.compareUnsigned(scratch.bytes, scratch.offset + startOffset, scratch.offset + endOffset, minPackedValue, startOffset, endOffset) < 0) {
System.arraycopy(scratch.bytes, scratch.offset + startOffset, minPackedValue, startOffset, config.bytesPerDim);
} else if (FutureArrays.compareUnsigned(scratch.bytes, scratch.offset + startOffset, scratch.offset + endOffset, maxPackedValue, startOffset, endOffset) > 0) {
System.arraycopy(scratch.bytes, scratch.offset + startOffset, maxPackedValue, startOffset, config.bytesPerDim);
}
}
}
}
/* In the 2+D case, we recursively pick the split dimension, compute the
* median value and partition other values around it. */
private Runnable writeFieldNDims(IndexOutput metaOut, IndexOutput indexOut, IndexOutput dataOut, String fieldName, MutablePointValues values) throws IOException {
if (pointCount != 0) {
throw new IllegalStateException("cannot mix add and writeField");
}
// Catch user silliness:
if (finished == true) {
throw new IllegalStateException("already finished");
}
// Mark that we already finished:
finished = true;
pointCount = values.size();
final int numLeaves = Math.toIntExact((pointCount + config.maxPointsInLeafNode - 1) / config.maxPointsInLeafNode);
final int numSplits = numLeaves - 1;
checkMaxLeafNodeCount(numLeaves);
final byte[] splitPackedValues = new byte[numSplits * config.bytesPerDim];
final byte[] splitDimensionValues = new byte[numSplits];
final long[] leafBlockFPs = new long[numLeaves];
// compute the min/max for this slice
computePackedValueBounds(values, 0, Math.toIntExact(pointCount), minPackedValue, maxPackedValue, scratchBytesRef1);
for (int i = 0; i < Math.toIntExact(pointCount); ++i) {
docsSeen.set(values.getDocID(i));
}
final long dataStartFP = dataOut.getFilePointer();
final int[] parentSplits = new int[config.numIndexDims];
build(0, numLeaves, values, 0, Math.toIntExact(pointCount), dataOut,
minPackedValue.clone(), maxPackedValue.clone(), parentSplits,
splitPackedValues, splitDimensionValues, leafBlockFPs,
new int[config.maxPointsInLeafNode]);
assert Arrays.equals(parentSplits, new int[config.numIndexDims]);
scratchBytesRef1.length = config.bytesPerDim;
scratchBytesRef1.bytes = splitPackedValues;
BKDTreeLeafNodes leafNodes = new BKDTreeLeafNodes() {
@Override
public long getLeafLP(int index) {
return leafBlockFPs[index];
}
@Override
public BytesRef getSplitValue(int index) {
scratchBytesRef1.offset = index * config.bytesPerDim;
return scratchBytesRef1;
}
@Override
public int getSplitDimension(int index) {
return splitDimensionValues[index] & 0xff;
}
@Override
public int numLeaves() {
return leafBlockFPs.length;
}
};
return () -> {
try {
writeIndex(metaOut, indexOut, config.maxPointsInLeafNode, leafNodes, dataStartFP);
} catch (IOException e) {
throw new UncheckedIOException(e);
}
};
}
/* In the 1D case, we can simply sort points in ascending order and use the
* same writing logic as we use at merge time. */
private Runnable writeField1Dim(IndexOutput metaOut, IndexOutput indexOut, IndexOutput dataOut, String fieldName, MutablePointValues reader) throws IOException {
MutablePointsReaderUtils.sort(config, maxDoc, reader, 0, Math.toIntExact(reader.size()));
final OneDimensionBKDWriter oneDimWriter = new OneDimensionBKDWriter(metaOut, indexOut, dataOut);
reader.intersect(new IntersectVisitor() {
@Override
public void visit(int docID, byte[] packedValue) throws IOException {
oneDimWriter.add(packedValue, docID);
}
@Override
public void visit(int docID) {
throw new IllegalStateException();
}
@Override
public Relation compare(byte[] minPackedValue, byte[] maxPackedValue) {
return Relation.CELL_CROSSES_QUERY;
}
});
return oneDimWriter.finish();
}
/** More efficient bulk-add for incoming {@link BKDReader}s. This does a merge sort of the already
* sorted values and currently only works when numDims==1. This returns -1 if all documents containing
* dimensional values were deleted. */
public Runnable merge(IndexOutput metaOut, IndexOutput indexOut, IndexOutput dataOut, List<MergeState.DocMap> docMaps, List<BKDReader> readers) throws IOException {
assert docMaps == null || readers.size() == docMaps.size();
BKDMergeQueue queue = new BKDMergeQueue(config.bytesPerDim, readers.size());
for(int i=0;i<readers.size();i++) {
BKDReader bkd = readers.get(i);
MergeState.DocMap docMap;
if (docMaps == null) {
docMap = null;
} else {
docMap = docMaps.get(i);
}
MergeReader reader = new MergeReader(bkd, docMap);
if (reader.next()) {
queue.add(reader);
}
}
OneDimensionBKDWriter oneDimWriter = new OneDimensionBKDWriter(metaOut, indexOut, dataOut);
while (queue.size() != 0) {
MergeReader reader = queue.top();
// System.out.println("iter reader=" + reader);
oneDimWriter.add(reader.state.scratchDataPackedValue, reader.docID);
if (reader.next()) {
queue.updateTop();
} else {
// This segment was exhausted
queue.pop();
}
}
return oneDimWriter.finish();
}
// Reused when writing leaf blocks
private final ByteBuffersDataOutput scratchOut = ByteBuffersDataOutput.newResettableInstance();
private class OneDimensionBKDWriter {
final IndexOutput metaOut, indexOut, dataOut;
final long dataStartFP;
final List<Long> leafBlockFPs = new ArrayList<>();
final List<byte[]> leafBlockStartValues = new ArrayList<>();
final byte[] leafValues = new byte[config.maxPointsInLeafNode * config.packedBytesLength];
final int[] leafDocs = new int[config.maxPointsInLeafNode];
private long valueCount;
private int leafCount;
private int leafCardinality;
OneDimensionBKDWriter(IndexOutput metaOut, IndexOutput indexOut, IndexOutput dataOut) {
if (config.numIndexDims != 1) {
throw new UnsupportedOperationException("config.numIndexDims must be 1 but got " + config.numIndexDims);
}
if (pointCount != 0) {
throw new IllegalStateException("cannot mix add and merge");
}
// Catch user silliness:
if (finished == true) {
throw new IllegalStateException("already finished");
}
// Mark that we already finished:
finished = true;
this.metaOut = metaOut;
this.indexOut = indexOut;
this.dataOut = dataOut;
this.dataStartFP = dataOut.getFilePointer();
lastPackedValue = new byte[config.packedBytesLength];
}
// for asserts
final byte[] lastPackedValue;
private int lastDocID;
void add(byte[] packedValue, int docID) throws IOException {
assert valueInOrder(config, valueCount + leafCount,
0, lastPackedValue, packedValue, 0, docID, lastDocID);
if (leafCount == 0 || FutureArrays.mismatch(leafValues, (leafCount - 1) * config.bytesPerDim, leafCount * config.bytesPerDim, packedValue, 0, config.bytesPerDim) != -1) {
leafCardinality++;
}
System.arraycopy(packedValue, 0, leafValues, leafCount * config.packedBytesLength, config.packedBytesLength);
leafDocs[leafCount] = docID;
docsSeen.set(docID);
leafCount++;
if (valueCount + leafCount > totalPointCount) {
throw new IllegalStateException("totalPointCount=" + totalPointCount + " was passed when we were created, but we just hit " + (valueCount + leafCount) + " values");
}
if (leafCount == config.maxPointsInLeafNode) {
// We write a block once we hit exactly the max count ... this is different from
// when we write N > 1 dimensional points where we write between max/2 and max per leaf block
writeLeafBlock(leafCardinality);
leafCardinality = 0;
leafCount = 0;
}
assert (lastDocID = docID) >= 0; // only assign when asserts are enabled
}
public Runnable finish() throws IOException {
if (leafCount > 0) {
writeLeafBlock(leafCardinality);
leafCardinality = 0;
leafCount = 0;
}
if (valueCount == 0) {
return null;
}
pointCount = valueCount;
scratchBytesRef1.length = config.bytesPerDim;
scratchBytesRef1.offset = 0;
assert leafBlockStartValues.size() + 1 == leafBlockFPs.size();
BKDTreeLeafNodes leafNodes = new BKDTreeLeafNodes() {
@Override
public long getLeafLP(int index) {
return leafBlockFPs.get(index);
}
@Override
public BytesRef getSplitValue(int index) {
scratchBytesRef1.bytes = leafBlockStartValues.get(index);
return scratchBytesRef1;
}
@Override
public int getSplitDimension(int index) {
return 0;
}
@Override
public int numLeaves() {
return leafBlockFPs.size();
}
};
return () -> {
try {
writeIndex(metaOut, indexOut, config.maxPointsInLeafNode, leafNodes, dataStartFP);
} catch (IOException e) {
throw new UncheckedIOException(e);
}
};
}
private void writeLeafBlock(int leafCardinality) throws IOException {
assert leafCount != 0;
if (valueCount == 0) {
System.arraycopy(leafValues, 0, minPackedValue, 0, config.packedIndexBytesLength);
}
System.arraycopy(leafValues, (leafCount - 1) * config.packedBytesLength, maxPackedValue, 0, config.packedIndexBytesLength);
valueCount += leafCount;
if (leafBlockFPs.size() > 0) {
// Save the first (minimum) value in each leaf block except the first, to build the split value index in the end:
leafBlockStartValues.add(ArrayUtil.copyOfSubArray(leafValues, 0, config.packedBytesLength));
}
leafBlockFPs.add(dataOut.getFilePointer());
checkMaxLeafNodeCount(leafBlockFPs.size());
// Find per-dim common prefix:
int offset = (leafCount - 1) * config.packedBytesLength;
int prefix = FutureArrays.mismatch(leafValues, 0, config.bytesPerDim, leafValues, offset, offset + config.bytesPerDim);
if (prefix == -1) {
prefix = config.bytesPerDim;
}
commonPrefixLengths[0] = prefix;
assert scratchOut.size() == 0;
writeLeafBlockDocs(scratchOut, leafDocs, 0, leafCount);
writeCommonPrefixes(scratchOut, commonPrefixLengths, leafValues);
scratchBytesRef1.length = config.packedBytesLength;
scratchBytesRef1.bytes = leafValues;
final IntFunction<BytesRef> packedValues = new IntFunction<BytesRef>() {
@Override
public BytesRef apply(int i) {
scratchBytesRef1.offset = config.packedBytesLength * i;
return scratchBytesRef1;
}
};
assert valuesInOrderAndBounds(config, leafCount, 0, ArrayUtil.copyOfSubArray(leafValues, 0, config.packedBytesLength),
ArrayUtil.copyOfSubArray(leafValues, (leafCount - 1) * config.packedBytesLength, leafCount * config.packedBytesLength),
packedValues, leafDocs, 0);
writeLeafBlockPackedValues(scratchOut, commonPrefixLengths, leafCount, 0, packedValues, leafCardinality);
scratchOut.copyTo(dataOut);
scratchOut.reset();
}
}
private int getNumLeftLeafNodes(int numLeaves) {
assert numLeaves > 1: "getNumLeftLeaveNodes() called with " + numLeaves;
// return the level that can be filled with this number of leaves
int lastFullLevel = 31 - Integer.numberOfLeadingZeros(numLeaves);
// how many leaf nodes are in the full level
int leavesFullLevel = 1 << lastFullLevel;
// half of the leaf nodes from the full level goes to the left
int numLeftLeafNodes = leavesFullLevel / 2;
// leaf nodes that do not fit in the full level
int unbalancedLeafNodes = numLeaves - leavesFullLevel;
// distribute unbalanced leaf nodes
numLeftLeafNodes += Math.min(unbalancedLeafNodes, numLeftLeafNodes);
// we should always place unbalanced leaf nodes on the left
assert numLeftLeafNodes >= numLeaves - numLeftLeafNodes && numLeftLeafNodes <= 2L * (numLeaves - numLeftLeafNodes);
return numLeftLeafNodes;
}
// TODO: if we fixed each partition step to just record the file offset at the "split point", we could probably handle variable length
// encoding and not have our own ByteSequencesReader/Writer
// useful for debugging:
/*
private void printPathSlice(String desc, PathSlice slice, int dim) throws IOException {
System.out.println(" " + desc + " dim=" + dim + " count=" + slice.count + ":");
try(PointReader r = slice.writer.getReader(slice.start, slice.count)) {
int count = 0;
while (r.next()) {
byte[] v = r.packedValue();
System.out.println(" " + count + ": " + new BytesRef(v, dim*config.bytesPerDim, config.bytesPerDim));
count++;
if (count == slice.count) {
break;
}
}
}
}
*/
private void checkMaxLeafNodeCount(int numLeaves) {
if (config.bytesPerDim * (long) numLeaves > ArrayUtil.MAX_ARRAY_LENGTH) {
throw new IllegalStateException("too many nodes; increase config.maxPointsInLeafNode (currently " + config.maxPointsInLeafNode + ") and reindex");
}
}
/** Writes the BKD tree to the provided {@link IndexOutput}s and returns a {@link Runnable} that
* writes the index of the tree if at least one point has been added, or {@code null} otherwise. */
public Runnable finish(IndexOutput metaOut, IndexOutput indexOut, IndexOutput dataOut) throws IOException {
// System.out.println("\nBKDTreeWriter.finish pointCount=" + pointCount + " out=" + out + " heapWriter=" + heapPointWriter);
// TODO: specialize the 1D case? it's much faster at indexing time (no partitioning on recurse...)
// Catch user silliness:
if (finished == true) {
throw new IllegalStateException("already finished");
}
if (pointCount == 0) {
return null;
}
//mark as finished
finished = true;
pointWriter.close();
BKDRadixSelector.PathSlice points = new BKDRadixSelector.PathSlice(pointWriter, 0, pointCount);
//clean up pointers
tempInput = null;
pointWriter = null;
final int numLeaves = Math.toIntExact((pointCount + config.maxPointsInLeafNode - 1) / config.maxPointsInLeafNode);
final int numSplits = numLeaves - 1;
checkMaxLeafNodeCount(numLeaves);
// NOTE: we could save the 1+ here, to use a bit less heap at search time, but then we'd need a somewhat costly check at each
// step of the recursion to recompute the split dim:
// Indexed by nodeID, but first (root) nodeID is 1. We do 1+ because the lead byte at each recursion says which dim we split on.
byte[] splitPackedValues = new byte[Math.toIntExact(numSplits*config.bytesPerDim)];
byte[] splitDimensionValues = new byte[numSplits];
// +1 because leaf count is power of 2 (e.g. 8), and innerNodeCount is power of 2 minus 1 (e.g. 7)
long[] leafBlockFPs = new long[numLeaves];
// Make sure the math above "worked":
assert pointCount / numLeaves <= config.maxPointsInLeafNode: "pointCount=" + pointCount + " numLeaves=" + numLeaves + " config.maxPointsInLeafNode=" + config.maxPointsInLeafNode;
//We re-use the selector so we do not need to create an object every time.
BKDRadixSelector radixSelector = new BKDRadixSelector(config, maxPointsSortInHeap, tempDir, tempFileNamePrefix);
final long dataStartFP = dataOut.getFilePointer();
boolean success = false;
try {
final int[] parentSplits = new int[config.numIndexDims];
build(0, numLeaves, points,
dataOut, radixSelector,
minPackedValue.clone(), maxPackedValue.clone(),
parentSplits,
splitPackedValues,
splitDimensionValues,
leafBlockFPs,
new int[config.maxPointsInLeafNode]);
assert Arrays.equals(parentSplits, new int[config.numIndexDims]);
// If no exception, we should have cleaned everything up:
assert tempDir.getCreatedFiles().isEmpty();
//long t2 = System.nanoTime();
//System.out.println("write time: " + ((t2-t1)/1000000.0) + " msec");
success = true;
} finally {
if (success == false) {
IOUtils.deleteFilesIgnoringExceptions(tempDir, tempDir.getCreatedFiles());
}
}
scratchBytesRef1.bytes = splitPackedValues;
scratchBytesRef1.length = config.bytesPerDim;
BKDTreeLeafNodes leafNodes = new BKDTreeLeafNodes() {
@Override
public long getLeafLP(int index) {
return leafBlockFPs[index];
}
@Override
public BytesRef getSplitValue(int index) {
scratchBytesRef1.offset = index * config.bytesPerDim;
return scratchBytesRef1;
}
@Override
public int getSplitDimension(int index) {
return splitDimensionValues[index] & 0xff;
}
@Override
public int numLeaves() {
return leafBlockFPs.length;
}
};
return () -> {
// Write index:
try {
writeIndex(metaOut, indexOut, config.maxPointsInLeafNode, leafNodes, dataStartFP);
} catch (IOException e) {
throw new UncheckedIOException(e);
}
};
}
/** Packs the two arrays, representing a semi-balanced binary tree, into a compact byte[] structure. */
private byte[] packIndex(BKDTreeLeafNodes leafNodes) throws IOException {
/** Reused while packing the index */
ByteBuffersDataOutput writeBuffer = ByteBuffersDataOutput.newResettableInstance();
// This is the "file" we append the byte[] to:
List<byte[]> blocks = new ArrayList<>();
byte[] lastSplitValues = new byte[config.bytesPerDim * config.numIndexDims];
//System.out.println("\npack index");
int totalSize = recursePackIndex(writeBuffer, leafNodes, 0l, blocks, lastSplitValues, new boolean[config.numIndexDims], false,
0, leafNodes.numLeaves());
// Compact the byte[] blocks into single byte index:
byte[] index = new byte[totalSize];
int upto = 0;
for(byte[] block : blocks) {
System.arraycopy(block, 0, index, upto, block.length);
upto += block.length;
}
assert upto == totalSize;
return index;
}
/** Appends the current contents of writeBuffer as another block on the growing in-memory file */
private int appendBlock(ByteBuffersDataOutput writeBuffer, List<byte[]> blocks) {
byte[] block = writeBuffer.toArrayCopy();
blocks.add(block);
writeBuffer.reset();
return block.length;
}
/**
* lastSplitValues is per-dimension split value previously seen; we use this to prefix-code the split byte[] on each inner node
*/
private int recursePackIndex(ByteBuffersDataOutput writeBuffer, BKDTreeLeafNodes leafNodes, long minBlockFP, List<byte[]> blocks,
byte[] lastSplitValues, boolean[] negativeDeltas, boolean isLeft, int leavesOffset, int numLeaves) throws IOException {
if (numLeaves == 1) {
if (isLeft) {
assert leafNodes.getLeafLP(leavesOffset) - minBlockFP == 0;
return 0;
} else {
long delta = leafNodes.getLeafLP(leavesOffset) - minBlockFP;
assert leafNodes.numLeaves() == numLeaves || delta > 0 : "expected delta > 0; got numLeaves =" + numLeaves + " and delta=" + delta;
writeBuffer.writeVLong(delta);
return appendBlock(writeBuffer, blocks);
}
} else {
long leftBlockFP;
if (isLeft) {
// The left tree's left most leaf block FP is always the minimal FP:
assert leafNodes.getLeafLP(leavesOffset) == minBlockFP;
leftBlockFP = minBlockFP;
} else {
leftBlockFP = leafNodes.getLeafLP(leavesOffset);
long delta = leftBlockFP - minBlockFP;
assert leafNodes.numLeaves() == numLeaves || delta > 0 : "expected delta > 0; got numLeaves =" + numLeaves + " and delta=" + delta;
writeBuffer.writeVLong(delta);
}
int numLeftLeafNodes = getNumLeftLeafNodes(numLeaves);
final int rightOffset = leavesOffset + numLeftLeafNodes;
final int splitOffset = rightOffset - 1;
int splitDim = leafNodes.getSplitDimension(splitOffset);
BytesRef splitValue = leafNodes.getSplitValue(splitOffset);
int address = splitValue.offset;
//System.out.println("recursePack inner nodeID=" + nodeID + " splitDim=" + splitDim + " splitValue=" + new BytesRef(splitPackedValues, address, config.bytesPerDim));
// find common prefix with last split value in this dim:
int prefix = FutureArrays.mismatch(splitValue.bytes, address, address + config.bytesPerDim, lastSplitValues,
splitDim * config.bytesPerDim, splitDim * config.bytesPerDim + config.bytesPerDim);
if (prefix == -1) {
prefix = config.bytesPerDim;
}
//System.out.println("writeNodeData nodeID=" + nodeID + " splitDim=" + splitDim + " numDims=" + numDims + " config.bytesPerDim=" + config.bytesPerDim + " prefix=" + prefix);
int firstDiffByteDelta;
if (prefix < config.bytesPerDim) {
//System.out.println(" delta byte cur=" + Integer.toHexString(splitPackedValues[address+prefix]&0xFF) + " prev=" + Integer.toHexString(lastSplitValues[splitDim * config.bytesPerDim + prefix]&0xFF) + " negated?=" + negativeDeltas[splitDim]);
firstDiffByteDelta = (splitValue.bytes[address+prefix]&0xFF) - (lastSplitValues[splitDim * config.bytesPerDim + prefix]&0xFF);
if (negativeDeltas[splitDim]) {
firstDiffByteDelta = -firstDiffByteDelta;
}
//System.out.println(" delta=" + firstDiffByteDelta);
assert firstDiffByteDelta > 0;
} else {
firstDiffByteDelta = 0;
}
// pack the prefix, splitDim and delta first diff byte into a single vInt:
int code = (firstDiffByteDelta * (1+config.bytesPerDim) + prefix) * config.numIndexDims + splitDim;
//System.out.println(" code=" + code);
//System.out.println(" splitValue=" + new BytesRef(splitPackedValues, address, config.bytesPerDim));
writeBuffer.writeVInt(code);
// write the split value, prefix coded vs. our parent's split value:
int suffix = config.bytesPerDim - prefix;
byte[] savSplitValue = new byte[suffix];
if (suffix > 1) {
writeBuffer.writeBytes(splitValue.bytes, address+prefix+1, suffix-1);
}
byte[] cmp = lastSplitValues.clone();
System.arraycopy(lastSplitValues, splitDim * config.bytesPerDim + prefix, savSplitValue, 0, suffix);
// copy our split value into lastSplitValues for our children to prefix-code against
System.arraycopy(splitValue.bytes, address+prefix, lastSplitValues, splitDim * config.bytesPerDim + prefix, suffix);
int numBytes = appendBlock(writeBuffer, blocks);
// placeholder for left-tree numBytes; we need this so that at search time if we only need to recurse into the right sub-tree we can
// quickly seek to its starting point
int idxSav = blocks.size();
blocks.add(null);
boolean savNegativeDelta = negativeDeltas[splitDim];
negativeDeltas[splitDim] = true;
int leftNumBytes = recursePackIndex(writeBuffer, leafNodes, leftBlockFP, blocks, lastSplitValues, negativeDeltas, true,
leavesOffset, numLeftLeafNodes);
if (numLeftLeafNodes != 1) {
writeBuffer.writeVInt(leftNumBytes);
} else {
assert leftNumBytes == 0: "leftNumBytes=" + leftNumBytes;
}
byte[] bytes2 = writeBuffer.toArrayCopy();
writeBuffer.reset();
// replace our placeholder:
blocks.set(idxSav, bytes2);
negativeDeltas[splitDim] = false;
int rightNumBytes = recursePackIndex(writeBuffer, leafNodes, leftBlockFP, blocks, lastSplitValues, negativeDeltas, false,
rightOffset, numLeaves - numLeftLeafNodes);
negativeDeltas[splitDim] = savNegativeDelta;
// restore lastSplitValues to what caller originally passed us:
System.arraycopy(savSplitValue, 0, lastSplitValues, splitDim * config.bytesPerDim + prefix, suffix);
assert Arrays.equals(lastSplitValues, cmp);
return numBytes + bytes2.length + leftNumBytes + rightNumBytes;
}
}
private void writeIndex(IndexOutput metaOut, IndexOutput indexOut, int countPerLeaf, BKDTreeLeafNodes leafNodes, long dataStartFP) throws IOException {
byte[] packedIndex = packIndex(leafNodes);
writeIndex(metaOut, indexOut, countPerLeaf, leafNodes.numLeaves(), packedIndex, dataStartFP);
}
private void writeIndex(IndexOutput metaOut, IndexOutput indexOut, int countPerLeaf, int numLeaves, byte[] packedIndex, long dataStartFP) throws IOException {
CodecUtil.writeHeader(metaOut, CODEC_NAME, VERSION_CURRENT);
metaOut.writeVInt(config.numDims);
metaOut.writeVInt(config.numIndexDims);
metaOut.writeVInt(countPerLeaf);
metaOut.writeVInt(config.bytesPerDim);
assert numLeaves > 0;
metaOut.writeVInt(numLeaves);
metaOut.writeBytes(minPackedValue, 0, config.packedIndexBytesLength);
metaOut.writeBytes(maxPackedValue, 0, config.packedIndexBytesLength);
metaOut.writeVLong(pointCount);
metaOut.writeVInt(docsSeen.cardinality());
metaOut.writeVInt(packedIndex.length);
metaOut.writeLong(dataStartFP);
// If metaOut and indexOut are the same file, we account for the fact that
// writing a long makes the index start 8 bytes later.
metaOut.writeLong(indexOut.getFilePointer() + (metaOut == indexOut ? Long.BYTES : 0));
indexOut.writeBytes(packedIndex, 0, packedIndex.length);
}
private void writeLeafBlockDocs(DataOutput out, int[] docIDs, int start, int count) throws IOException {
assert count > 0: "config.maxPointsInLeafNode=" + config.maxPointsInLeafNode;
out.writeVInt(count);
DocIdsWriter.writeDocIds(docIDs, start, count, out);
}
private void writeLeafBlockPackedValues(DataOutput out, int[] commonPrefixLengths, int count, int sortedDim, IntFunction<BytesRef> packedValues, int leafCardinality) throws IOException {
int prefixLenSum = Arrays.stream(commonPrefixLengths).sum();
if (prefixLenSum == config.packedBytesLength) {
// all values in this block are equal
out.writeByte((byte) -1);
} else {
assert commonPrefixLengths[sortedDim] < config.bytesPerDim;
// estimate if storing the values with cardinality is cheaper than storing all values.
int compressedByteOffset = sortedDim * config.bytesPerDim + commonPrefixLengths[sortedDim];
int highCardinalityCost;
int lowCardinalityCost;
if (count == leafCardinality) {
// all values in this block are different
highCardinalityCost = 0;
lowCardinalityCost = 1;
} else {
// compute cost of runLen compression
int numRunLens = 0;
for (int i = 0; i < count; ) {
// do run-length compression on the byte at compressedByteOffset
int runLen = runLen(packedValues, i, Math.min(i + 0xff, count), compressedByteOffset);
assert runLen <= 0xff;
numRunLens++;
i += runLen;
}
// Add cost of runLen compression
highCardinalityCost = count * (config.packedBytesLength - prefixLenSum - 1) + 2 * numRunLens;
// +1 is the byte needed for storing the cardinality
lowCardinalityCost = leafCardinality * (config.packedBytesLength - prefixLenSum + 1);
}
if (lowCardinalityCost <= highCardinalityCost) {
out.writeByte((byte) -2);
writeLowCardinalityLeafBlockPackedValues(out, commonPrefixLengths, count, packedValues);
} else {
out.writeByte((byte) sortedDim);
writeHighCardinalityLeafBlockPackedValues(out, commonPrefixLengths, count, sortedDim, packedValues, compressedByteOffset);
}
}
}
private void writeLowCardinalityLeafBlockPackedValues(DataOutput out, int[] commonPrefixLengths, int count, IntFunction<BytesRef> packedValues) throws IOException {
if (config.numIndexDims != 1) {
writeActualBounds(out, commonPrefixLengths, count, packedValues);
}
BytesRef value = packedValues.apply(0);
System.arraycopy(value.bytes, value.offset, scratch1, 0, config.packedBytesLength);
int cardinality = 1;
for (int i = 1; i < count; i++) {
value = packedValues.apply(i);
for(int dim = 0; dim < config.numDims; dim++) {
final int start = dim * config.bytesPerDim + commonPrefixLengths[dim];
final int end = dim * config.bytesPerDim + config.bytesPerDim;
if (FutureArrays.mismatch(value.bytes, value.offset + start, value.offset + end, scratch1, start, end) != -1) {
out.writeVInt(cardinality);
for (int j = 0; j < config.numDims; j++) {
out.writeBytes(scratch1, j * config.bytesPerDim + commonPrefixLengths[j], config.bytesPerDim - commonPrefixLengths[j]);
}
System.arraycopy(value.bytes, value.offset, scratch1, 0, config.packedBytesLength);
cardinality = 1;
break;
} else if (dim == config.numDims - 1){
cardinality++;
}
}
}
out.writeVInt(cardinality);
for (int i = 0; i < config.numDims; i++) {
out.writeBytes(scratch1, i * config.bytesPerDim + commonPrefixLengths[i], config.bytesPerDim - commonPrefixLengths[i]);
}
}
private void writeHighCardinalityLeafBlockPackedValues(DataOutput out, int[] commonPrefixLengths, int count, int sortedDim, IntFunction<BytesRef> packedValues, int compressedByteOffset) throws IOException {
if (config.numIndexDims != 1) {
writeActualBounds(out, commonPrefixLengths, count, packedValues);
}
commonPrefixLengths[sortedDim]++;
for (int i = 0; i < count; ) {
// do run-length compression on the byte at compressedByteOffset
int runLen = runLen(packedValues, i, Math.min(i + 0xff, count), compressedByteOffset);
assert runLen <= 0xff;
BytesRef first = packedValues.apply(i);
byte prefixByte = first.bytes[first.offset + compressedByteOffset];
out.writeByte(prefixByte);
out.writeByte((byte) runLen);
writeLeafBlockPackedValuesRange(out, commonPrefixLengths, i, i + runLen, packedValues);
i += runLen;
assert i <= count;
}
}
private void writeActualBounds(DataOutput out, int[] commonPrefixLengths, int count, IntFunction<BytesRef> packedValues) throws IOException {
for (int dim = 0; dim < config.numIndexDims; ++dim) {
int commonPrefixLength = commonPrefixLengths[dim];
int suffixLength = config.bytesPerDim - commonPrefixLength;
if (suffixLength > 0) {
BytesRef[] minMax = computeMinMax(count, packedValues, dim * config.bytesPerDim + commonPrefixLength, suffixLength);
BytesRef min = minMax[0];
BytesRef max = minMax[1];
out.writeBytes(min.bytes, min.offset, min.length);
out.writeBytes(max.bytes, max.offset, max.length);
}
}
}
/** Return an array that contains the min and max values for the [offset, offset+length] interval
* of the given {@link BytesRef}s. */
private static BytesRef[] computeMinMax(int count, IntFunction<BytesRef> packedValues, int offset, int length) {
assert length > 0;
BytesRefBuilder min = new BytesRefBuilder();
BytesRefBuilder max = new BytesRefBuilder();
BytesRef first = packedValues.apply(0);
min.copyBytes(first.bytes, first.offset + offset, length);
max.copyBytes(first.bytes, first.offset + offset, length);
for (int i = 1; i < count; ++i) {
BytesRef candidate = packedValues.apply(i);
if (FutureArrays.compareUnsigned(min.bytes(), 0, length, candidate.bytes, candidate.offset + offset, candidate.offset + offset + length) > 0) {
min.copyBytes(candidate.bytes, candidate.offset + offset, length);
} else if (FutureArrays.compareUnsigned(max.bytes(), 0, length, candidate.bytes, candidate.offset + offset, candidate.offset + offset + length) < 0) {
max.copyBytes(candidate.bytes, candidate.offset + offset, length);
}
}
return new BytesRef[]{min.get(), max.get()};
}
private void writeLeafBlockPackedValuesRange(DataOutput out, int[] commonPrefixLengths, int start, int end, IntFunction<BytesRef> packedValues) throws IOException {
for (int i = start; i < end; ++i) {
BytesRef ref = packedValues.apply(i);
assert ref.length == config.packedBytesLength;
for(int dim=0;dim<config.numDims;dim++) {
int prefix = commonPrefixLengths[dim];
out.writeBytes(ref.bytes, ref.offset + dim*config.bytesPerDim + prefix, config.bytesPerDim-prefix);
}
}
}
private static int runLen(IntFunction<BytesRef> packedValues, int start, int end, int byteOffset) {
BytesRef first = packedValues.apply(start);
byte b = first.bytes[first.offset + byteOffset];
for (int i = start + 1; i < end; ++i) {
BytesRef ref = packedValues.apply(i);
byte b2 = ref.bytes[ref.offset + byteOffset];
assert Byte.toUnsignedInt(b2) >= Byte.toUnsignedInt(b);
if (b != b2) {
return i - start;
}
}
return end - start;
}
private void writeCommonPrefixes(DataOutput out, int[] commonPrefixes, byte[] packedValue) throws IOException {
for(int dim=0;dim<config.numDims;dim++) {
out.writeVInt(commonPrefixes[dim]);
//System.out.println(commonPrefixes[dim] + " of " + config.bytesPerDim);
out.writeBytes(packedValue, dim*config.bytesPerDim, commonPrefixes[dim]);
}
}
@Override
public void close() throws IOException {
finished = true;
if (tempInput != null) {
// NOTE: this should only happen on exception, e.g. caller calls close w/o calling finish:
try {
tempInput.close();
} finally {
tempDir.deleteFile(tempInput.getName());
tempInput = null;
}
}
}
/** Called on exception, to check whether the checksum is also corrupt in this source, and add that
* information (checksum matched or didn't) as a suppressed exception. */
private Error verifyChecksum(Throwable priorException, PointWriter writer) throws IOException {
assert priorException != null;
// TODO: we could improve this, to always validate checksum as we recurse, if we shared left and
// right reader after recursing to children, and possibly within recursed children,
// since all together they make a single pass through the file. But this is a sizable re-org,
// and would mean leaving readers (IndexInputs) open for longer:
if (writer instanceof OfflinePointWriter) {
// We are reading from a temp file; go verify the checksum:
String tempFileName = ((OfflinePointWriter) writer).name;
if (tempDir.getCreatedFiles().contains(tempFileName)) {
try (ChecksumIndexInput in = tempDir.openChecksumInput(tempFileName, IOContext.READONCE)) {
CodecUtil.checkFooter(in, priorException);
}
}
}
// We are reading from heap; nothing to add:
throw IOUtils.rethrowAlways(priorException);
}
/**
* Pick the next dimension to split.
* @param minPackedValue the min values for all dimensions
* @param maxPackedValue the max values for all dimensions
* @param parentSplits how many times each dim has been split on the parent levels
* @return the dimension to split
*/
protected int split(byte[] minPackedValue, byte[] maxPackedValue, int[] parentSplits) {
// First look at whether there is a dimension that has split less than 2x less than
// the dim that has most splits, and return it if there is such a dimension and it
// does not only have equals values. This helps ensure all dimensions are indexed.
int maxNumSplits = 0;
for (int numSplits : parentSplits) {
maxNumSplits = Math.max(maxNumSplits, numSplits);
}
for (int dim = 0; dim < config.numIndexDims; ++dim) {
final int offset = dim * config.bytesPerDim;
if (parentSplits[dim] < maxNumSplits / 2 &&
FutureArrays.compareUnsigned(minPackedValue, offset, offset + config.bytesPerDim, maxPackedValue, offset, offset + config.bytesPerDim) != 0) {
return dim;
}
}
// Find which dim has the largest span so we can split on it:
int splitDim = -1;
for(int dim=0;dim<config.numIndexDims;dim++) {
NumericUtils.subtract(config.bytesPerDim, dim, maxPackedValue, minPackedValue, scratchDiff);
if (splitDim == -1 || FutureArrays.compareUnsigned(scratchDiff, 0, config.bytesPerDim, scratch1, 0, config.bytesPerDim) > 0) {
System.arraycopy(scratchDiff, 0, scratch1, 0, config.bytesPerDim);
splitDim = dim;
}
}
//System.out.println("SPLIT: " + splitDim);
return splitDim;
}
/** Pull a partition back into heap once the point count is low enough while recursing. */
private HeapPointWriter switchToHeap(PointWriter source) throws IOException {
int count = Math.toIntExact(source.count());
try (PointReader reader = source.getReader(0, source.count());
HeapPointWriter writer = new HeapPointWriter(config, count)) {
for(int i=0;i<count;i++) {
boolean hasNext = reader.next();
assert hasNext;
writer.append(reader.pointValue());
}
source.destroy();
return writer;
} catch (Throwable t) {
throw verifyChecksum(t, source);
}
}
/* Recursively reorders the provided reader and writes the bkd-tree on the fly; this method is used
* when we are writing a new segment directly from IndexWriter's indexing buffer (MutablePointsReader). */
private void build(int leavesOffset, int numLeaves,
MutablePointValues reader, int from, int to,
IndexOutput out,
byte[] minPackedValue, byte[] maxPackedValue,
int[] parentSplits,
byte[] splitPackedValues,
byte[] splitDimensionValues,
long[] leafBlockFPs,
int[] spareDocIds) throws IOException {
if (numLeaves == 1) {
// leaf node
final int count = to - from;
assert count <= config.maxPointsInLeafNode;
// Compute common prefixes
Arrays.fill(commonPrefixLengths, config.bytesPerDim);
reader.getValue(from, scratchBytesRef1);
for (int i = from + 1; i < to; ++i) {
reader.getValue(i, scratchBytesRef2);
for (int dim=0;dim<config.numDims;dim++) {
final int offset = dim * config.bytesPerDim;
int dimensionPrefixLength = commonPrefixLengths[dim];
commonPrefixLengths[dim] = FutureArrays.mismatch(scratchBytesRef1.bytes, scratchBytesRef1.offset + offset,
scratchBytesRef1.offset + offset + dimensionPrefixLength,
scratchBytesRef2.bytes, scratchBytesRef2.offset + offset,
scratchBytesRef2.offset + offset + dimensionPrefixLength);
if (commonPrefixLengths[dim] == -1) {
commonPrefixLengths[dim] = dimensionPrefixLength;
}
}
}
// Find the dimension that has the least number of unique bytes at commonPrefixLengths[dim]
FixedBitSet[] usedBytes = new FixedBitSet[config.numDims];
for (int dim = 0; dim < config.numDims; ++dim) {
if (commonPrefixLengths[dim] < config.bytesPerDim) {
usedBytes[dim] = new FixedBitSet(256);
}
}
for (int i = from + 1; i < to; ++i) {
for (int dim=0;dim<config.numDims;dim++) {
if (usedBytes[dim] != null) {
byte b = reader.getByteAt(i, dim * config.bytesPerDim + commonPrefixLengths[dim]);
usedBytes[dim].set(Byte.toUnsignedInt(b));
}
}
}
int sortedDim = 0;
int sortedDimCardinality = Integer.MAX_VALUE;
for (int dim = 0; dim < config.numDims; ++dim) {
if (usedBytes[dim] != null) {
final int cardinality = usedBytes[dim].cardinality();
if (cardinality < sortedDimCardinality) {
sortedDim = dim;
sortedDimCardinality = cardinality;
}
}
}
// sort by sortedDim
MutablePointsReaderUtils.sortByDim(config, sortedDim, commonPrefixLengths,
reader, from, to, scratchBytesRef1, scratchBytesRef2);
BytesRef comparator = scratchBytesRef1;
BytesRef collector = scratchBytesRef2;
reader.getValue(from, comparator);
int leafCardinality = 1;
for (int i = from + 1; i < to; ++i) {
reader.getValue(i, collector);
for (int dim =0; dim < config.numDims; dim++) {
final int start = dim * config.bytesPerDim + commonPrefixLengths[dim];
final int end = dim * config.bytesPerDim + config.bytesPerDim;
if (FutureArrays.mismatch(collector.bytes, collector.offset + start, collector.offset + end,
comparator.bytes, comparator.offset + start, comparator.offset + end) != -1) {
leafCardinality++;
BytesRef scratch = collector;
collector = comparator;
comparator = scratch;
break;
}
}
}
// Save the block file pointer:
leafBlockFPs[leavesOffset] = out.getFilePointer();
assert scratchOut.size() == 0;
// Write doc IDs
int[] docIDs = spareDocIds;
for (int i = from; i < to; ++i) {
docIDs[i - from] = reader.getDocID(i);
}
//System.out.println("writeLeafBlock pos=" + out.getFilePointer());
writeLeafBlockDocs(scratchOut, docIDs, 0, count);
// Write the common prefixes:
reader.getValue(from, scratchBytesRef1);
System.arraycopy(scratchBytesRef1.bytes, scratchBytesRef1.offset, scratch1, 0, config.packedBytesLength);
writeCommonPrefixes(scratchOut, commonPrefixLengths, scratch1);
// Write the full values:
IntFunction<BytesRef> packedValues = new IntFunction<BytesRef>() {
@Override
public BytesRef apply(int i) {
reader.getValue(from + i, scratchBytesRef1);
return scratchBytesRef1;
}
};
assert valuesInOrderAndBounds(config, count, sortedDim, minPackedValue, maxPackedValue, packedValues,
docIDs, 0);
writeLeafBlockPackedValues(scratchOut, commonPrefixLengths, count, sortedDim, packedValues, leafCardinality);
scratchOut.copyTo(out);
scratchOut.reset();
} else {
// inner node
final int splitDim;
// compute the split dimension and partition around it
if (config.numIndexDims == 1) {
splitDim = 0;
} else {
// for dimensions > 2 we recompute the bounds for the current inner node to help the algorithm choose best
// split dimensions. Because it is an expensive operation, the frequency we recompute the bounds is given
// by SPLITS_BEFORE_EXACT_BOUNDS.
if (numLeaves != leafBlockFPs.length && config.numIndexDims > 2 && Arrays.stream(parentSplits).sum() % SPLITS_BEFORE_EXACT_BOUNDS == 0) {
computePackedValueBounds(reader, from, to, minPackedValue, maxPackedValue, scratchBytesRef1);
}
splitDim = split(minPackedValue, maxPackedValue, parentSplits);
}
// How many leaves will be in the left tree:
int numLeftLeafNodes = getNumLeftLeafNodes(numLeaves);
// How many points will be in the left tree:
final int mid = from + numLeftLeafNodes * config.maxPointsInLeafNode;
int commonPrefixLen = FutureArrays.mismatch(minPackedValue, splitDim * config.bytesPerDim,
splitDim * config.bytesPerDim + config.bytesPerDim, maxPackedValue, splitDim * config.bytesPerDim,
splitDim * config.bytesPerDim + config.bytesPerDim);
if (commonPrefixLen == -1) {
commonPrefixLen = config.bytesPerDim;
}
MutablePointsReaderUtils.partition(config, maxDoc, splitDim, commonPrefixLen,
reader, from, to, mid, scratchBytesRef1, scratchBytesRef2);
final int rightOffset = leavesOffset + numLeftLeafNodes;
final int splitOffset = rightOffset - 1;
// set the split value
final int address = splitOffset * config.bytesPerDim;
splitDimensionValues[splitOffset] = (byte) splitDim;
reader.getValue(mid, scratchBytesRef1);
System.arraycopy(scratchBytesRef1.bytes, scratchBytesRef1.offset + splitDim * config.bytesPerDim, splitPackedValues, address, config.bytesPerDim);
byte[] minSplitPackedValue = ArrayUtil.copyOfSubArray(minPackedValue, 0, config.packedIndexBytesLength);
byte[] maxSplitPackedValue = ArrayUtil.copyOfSubArray(maxPackedValue, 0, config.packedIndexBytesLength);
System.arraycopy(scratchBytesRef1.bytes, scratchBytesRef1.offset + splitDim * config.bytesPerDim,
minSplitPackedValue, splitDim * config.bytesPerDim, config.bytesPerDim);
System.arraycopy(scratchBytesRef1.bytes, scratchBytesRef1.offset + splitDim * config.bytesPerDim,
maxSplitPackedValue, splitDim * config.bytesPerDim, config.bytesPerDim);
// recurse
parentSplits[splitDim]++;
build(leavesOffset, numLeftLeafNodes, reader, from, mid, out,
minPackedValue, maxSplitPackedValue, parentSplits,
splitPackedValues, splitDimensionValues, leafBlockFPs, spareDocIds);
build(rightOffset, numLeaves - numLeftLeafNodes, reader, mid, to, out,
minSplitPackedValue, maxPackedValue, parentSplits,
splitPackedValues, splitDimensionValues, leafBlockFPs, spareDocIds);
parentSplits[splitDim]--;
}
}
private void computePackedValueBounds(BKDRadixSelector.PathSlice slice, byte[] minPackedValue, byte[] maxPackedValue) throws IOException {
try (PointReader reader = slice.writer.getReader(slice.start, slice.count)) {
if (reader.next() == false) {
return;
}
BytesRef value = reader.pointValue().packedValue();
System.arraycopy(value.bytes, value.offset, minPackedValue, 0, config.packedIndexBytesLength);
System.arraycopy(value.bytes, value.offset, maxPackedValue, 0, config.packedIndexBytesLength);
while (reader.next()) {
value = reader.pointValue().packedValue();
for(int dim = 0; dim < config.numIndexDims; dim++) {
final int startOffset = dim * config.bytesPerDim;
final int endOffset = startOffset + config.bytesPerDim;
if (FutureArrays.compareUnsigned(value.bytes, value.offset + startOffset, value.offset + endOffset, minPackedValue, startOffset, endOffset) < 0) {
System.arraycopy(value.bytes, value.offset + startOffset, minPackedValue, startOffset, config.bytesPerDim);
} else if (FutureArrays.compareUnsigned(value.bytes, value.offset + startOffset, value.offset + endOffset, maxPackedValue, startOffset, endOffset) > 0) {
System.arraycopy(value.bytes, value.offset + startOffset, maxPackedValue, startOffset, config.bytesPerDim);
}
}
}
}
}
/** The point writer contains the data that is going to be splitted using radix selection.
/* This method is used when we are merging previously written segments, in the numDims > 1 case. */
private void build(int leavesOffset, int numLeaves,
BKDRadixSelector.PathSlice points,
IndexOutput out,
BKDRadixSelector radixSelector,
byte[] minPackedValue, byte[] maxPackedValue,
int[] parentSplits,
byte[] splitPackedValues,
byte[] splitDimensionValues,
long[] leafBlockFPs,
int[] spareDocIds) throws IOException {
if (numLeaves == 1) {
// Leaf node: write block
// We can write the block in any order so by default we write it sorted by the dimension that has the
// least number of unique bytes at commonPrefixLengths[dim], which makes compression more efficient
HeapPointWriter heapSource;
if (points.writer instanceof HeapPointWriter == false) {
// Adversarial cases can cause this, e.g. merging big segments with most of the points deleted
heapSource = switchToHeap(points.writer);
} else {
heapSource = (HeapPointWriter) points.writer;
}
int from = Math.toIntExact(points.start);
int to = Math.toIntExact(points.start + points.count);
//we store common prefix on scratch1
computeCommonPrefixLength(heapSource, scratch1, from, to);
int sortedDim = 0;
int sortedDimCardinality = Integer.MAX_VALUE;
FixedBitSet[] usedBytes = new FixedBitSet[config.numDims];
for (int dim = 0; dim < config.numDims; ++dim) {
if (commonPrefixLengths[dim] < config.bytesPerDim) {
usedBytes[dim] = new FixedBitSet(256);
}
}
//Find the dimension to compress
for (int dim = 0; dim < config.numDims; dim++) {
int prefix = commonPrefixLengths[dim];
if (prefix < config.bytesPerDim) {
int offset = dim * config.bytesPerDim;
for (int i = from; i < to; ++i) {
PointValue value = heapSource.getPackedValueSlice(i);
BytesRef packedValue = value.packedValue();
int bucket = packedValue.bytes[packedValue.offset + offset + prefix] & 0xff;
usedBytes[dim].set(bucket);
}
int cardinality =usedBytes[dim].cardinality();
if (cardinality < sortedDimCardinality) {
sortedDim = dim;
sortedDimCardinality = cardinality;
}
}
}
// sort the chosen dimension
radixSelector.heapRadixSort(heapSource, from, to, sortedDim, commonPrefixLengths[sortedDim]);
// compute cardinality
int leafCardinality = heapSource.computeCardinality(from, to, commonPrefixLengths);
// Save the block file pointer:
leafBlockFPs[leavesOffset] = out.getFilePointer();
//System.out.println(" write leaf block @ fp=" + out.getFilePointer());
// Write docIDs first, as their own chunk, so that at intersect time we can add all docIDs w/o
// loading the values:
int count = to - from;
assert count > 0: "numLeaves=" + numLeaves + " leavesOffset=" + leavesOffset;
assert count <= spareDocIds.length : "count=" + count + " > length=" + spareDocIds.length;
// Write doc IDs
int[] docIDs = spareDocIds;
for (int i = 0; i < count; i++) {
docIDs[i] = heapSource.getPackedValueSlice(from + i).docID();
}
writeLeafBlockDocs(out, docIDs, 0, count);
// TODO: minor opto: we don't really have to write the actual common prefixes, because BKDReader on recursing can regenerate it for us
// from the index, much like how terms dict does so from the FST:
// Write the common prefixes:
writeCommonPrefixes(out, commonPrefixLengths, scratch1);
// Write the full values:
IntFunction<BytesRef> packedValues = new IntFunction<BytesRef>() {
final BytesRef scratch = new BytesRef();
{
scratch.length = config.packedBytesLength;
}
@Override
public BytesRef apply(int i) {
PointValue value = heapSource.getPackedValueSlice(from + i);
return value.packedValue();
}
};
assert valuesInOrderAndBounds(config, count, sortedDim, minPackedValue, maxPackedValue, packedValues,
docIDs, 0);
writeLeafBlockPackedValues(out, commonPrefixLengths, count, sortedDim, packedValues, leafCardinality);
} else {
// Inner node: partition/recurse
final int splitDim;
if (config.numIndexDims == 1) {
splitDim = 0;
} else {
// for dimensions > 2 we recompute the bounds for the current inner node to help the algorithm choose best
// split dimensions. Because it is an expensive operation, the frequency we recompute the bounds is given
// by SPLITS_BEFORE_EXACT_BOUNDS.
if (numLeaves != leafBlockFPs.length && config.numIndexDims > 2 && Arrays.stream(parentSplits).sum() % SPLITS_BEFORE_EXACT_BOUNDS == 0) {
computePackedValueBounds(points, minPackedValue, maxPackedValue);
}
splitDim = split(minPackedValue, maxPackedValue, parentSplits);
}
assert numLeaves <= leafBlockFPs.length : "numLeaves=" + numLeaves + " leafBlockFPs.length=" + leafBlockFPs.length;
// How many leaves will be in the left tree:
final int numLeftLeafNodes = getNumLeftLeafNodes(numLeaves);
// How many points will be in the left tree:
final long leftCount = numLeftLeafNodes * config.maxPointsInLeafNode;
BKDRadixSelector.PathSlice[] slices = new BKDRadixSelector.PathSlice[2];
int commonPrefixLen = FutureArrays.mismatch(minPackedValue, splitDim * config.bytesPerDim,
splitDim * config.bytesPerDim + config.bytesPerDim, maxPackedValue, splitDim * config.bytesPerDim,
splitDim * config.bytesPerDim + config.bytesPerDim);
if (commonPrefixLen == -1) {
commonPrefixLen = config.bytesPerDim;
}
byte[] splitValue = radixSelector.select(points, slices, points.start, points.start + points.count, points.start + leftCount, splitDim, commonPrefixLen);
final int rightOffset = leavesOffset + numLeftLeafNodes;
final int splitValueOffset = rightOffset - 1;
splitDimensionValues[splitValueOffset] = (byte) splitDim;
int address = splitValueOffset * config.bytesPerDim;
System.arraycopy(splitValue, 0, splitPackedValues, address, config.bytesPerDim);
byte[] minSplitPackedValue = new byte[config.packedIndexBytesLength];
System.arraycopy(minPackedValue, 0, minSplitPackedValue, 0, config.packedIndexBytesLength);
byte[] maxSplitPackedValue = new byte[config.packedIndexBytesLength];
System.arraycopy(maxPackedValue, 0, maxSplitPackedValue, 0, config.packedIndexBytesLength);
System.arraycopy(splitValue, 0, minSplitPackedValue, splitDim * config.bytesPerDim, config.bytesPerDim);
System.arraycopy(splitValue, 0, maxSplitPackedValue, splitDim * config.bytesPerDim, config.bytesPerDim);
parentSplits[splitDim]++;
// Recurse on left tree:
build(leavesOffset, numLeftLeafNodes, slices[0],
out, radixSelector, minPackedValue, maxSplitPackedValue,
parentSplits, splitPackedValues, splitDimensionValues, leafBlockFPs, spareDocIds);
// Recurse on right tree:
build(rightOffset, numLeaves - numLeftLeafNodes, slices[1],
out, radixSelector, minSplitPackedValue, maxPackedValue,
parentSplits, splitPackedValues, splitDimensionValues, leafBlockFPs, spareDocIds);
parentSplits[splitDim]--;
}
}
private void computeCommonPrefixLength(HeapPointWriter heapPointWriter, byte[] commonPrefix, int from, int to) {
Arrays.fill(commonPrefixLengths, config.bytesPerDim);
PointValue value = heapPointWriter.getPackedValueSlice(from);
BytesRef packedValue = value.packedValue();
for (int dim = 0; dim < config.numDims; dim++) {
System.arraycopy(packedValue.bytes, packedValue.offset + dim * config.bytesPerDim, commonPrefix, dim * config.bytesPerDim, config.bytesPerDim);
}
for (int i = from + 1; i < to; i++) {
value = heapPointWriter.getPackedValueSlice(i);
packedValue = value.packedValue();
for (int dim = 0; dim < config.numDims; dim++) {
if (commonPrefixLengths[dim] != 0) {
int j = FutureArrays.mismatch(commonPrefix, dim * config.bytesPerDim, dim * config.bytesPerDim + commonPrefixLengths[dim], packedValue.bytes, packedValue.offset + dim * config.bytesPerDim, packedValue.offset + dim * config.bytesPerDim + commonPrefixLengths[dim]);
if (j != -1) {
commonPrefixLengths[dim] = j;
}
}
}
}
}
// only called from assert
private static boolean valuesInOrderAndBounds(BKDConfig config, int count, int sortedDim, byte[] minPackedValue, byte[] maxPackedValue,
IntFunction<BytesRef> values, int[] docs, int docsOffset) {
byte[] lastPackedValue = new byte[config.packedBytesLength];
int lastDoc = -1;
for (int i=0;i<count;i++) {
BytesRef packedValue = values.apply(i);
assert packedValue.length == config.packedBytesLength;
assert valueInOrder(config, i, sortedDim, lastPackedValue, packedValue.bytes, packedValue.offset,
docs[docsOffset + i], lastDoc);
lastDoc = docs[docsOffset + i];
// Make sure this value does in fact fall within this leaf cell:
assert valueInBounds(config, packedValue, minPackedValue, maxPackedValue);
}
return true;
}
// only called from assert
private static boolean valueInOrder(BKDConfig config, long ord, int sortedDim, byte[] lastPackedValue, byte[] packedValue, int packedValueOffset,
int doc, int lastDoc) {
int dimOffset = sortedDim * config.bytesPerDim;
if (ord > 0) {
int cmp = FutureArrays.compareUnsigned(lastPackedValue, dimOffset, dimOffset + config.bytesPerDim, packedValue, packedValueOffset + dimOffset, packedValueOffset + dimOffset + config.bytesPerDim);
if (cmp > 0) {
throw new AssertionError("values out of order: last value=" + new BytesRef(lastPackedValue) + " current value=" + new BytesRef(packedValue, packedValueOffset, config.packedBytesLength) + " ord=" + ord);
}
if (cmp == 0 && config.numDims > config.numIndexDims) {
cmp = FutureArrays.compareUnsigned(lastPackedValue, config.packedIndexBytesLength, config.packedBytesLength, packedValue, packedValueOffset + config.packedIndexBytesLength, packedValueOffset + config.packedBytesLength);
if (cmp > 0) {
throw new AssertionError("data values out of order: last value=" + new BytesRef(lastPackedValue) + " current value=" + new BytesRef(packedValue, packedValueOffset, config.packedBytesLength) + " ord=" + ord);
}
}
if (cmp == 0 && doc < lastDoc) {
throw new AssertionError("docs out of order: last doc=" + lastDoc + " current doc=" + doc + " ord=" + ord);
}
}
System.arraycopy(packedValue, packedValueOffset, lastPackedValue, 0, config.packedBytesLength);
return true;
}
// only called from assert
private static boolean valueInBounds(BKDConfig config, BytesRef packedValue, byte[] minPackedValue, byte[] maxPackedValue) {
for(int dim=0;dim<config.numIndexDims;dim++) {
int offset = config.bytesPerDim*dim;
if (FutureArrays.compareUnsigned(packedValue.bytes, packedValue.offset + offset, packedValue.offset + offset + config.bytesPerDim, minPackedValue, offset, offset + config.bytesPerDim) < 0) {
return false;
}
if (FutureArrays.compareUnsigned(packedValue.bytes, packedValue.offset + offset, packedValue.offset + offset + config.bytesPerDim, maxPackedValue, offset, offset + config.bytesPerDim) > 0) {
return false;
}
}
return true;
}
}