blob: 519cb2f2350716ac40ffd3e9d44ddc73e1a580c6 [file] [log] [blame] [view]
<!--
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
-->
## TsFile-Flink 连接器
### 关于 TsFile-Flink 连接器
TsFile-Flink-Connector 对 Tsfile 类型的外部数据源实现 Flink 的支持。 这使用户可以通过 Flink DataStream/DataSet 进行读取,写入和查询。
使用此连接器,您可以
* 从本地文件系统或 hdfs 加载单个或多个 TsFile (只支持以 DataSet 的形式)到 Flink 。
* 将本地文件系统或 hdfs 中特定目录中的所有文件加载到 Flink 中。
### 快速开始
#### TsFileInputFormat 示例
1. 使用默认的 RowRowRecordParser 创建 TsFileInputFormat 。
```java
String[] filedNames = {
QueryConstant.RESERVED_TIME,
"device_1.sensor_1",
"device_1.sensor_2",
"device_1.sensor_3",
"device_2.sensor_1",
"device_2.sensor_2",
"device_2.sensor_3"
};
TypeInformation[] typeInformations = new TypeInformation[] {
Types.LONG,
Types.FLOAT,
Types.INT,
Types.INT,
Types.FLOAT,
Types.INT,
Types.INT
};
List<Path> paths = Arrays.stream(filedNames)
.filter(s -> !s.equals(QueryConstant.RESERVED_TIME))
.map(Path::new)
.collect(Collectors.toList());
RowTypeInfo rowTypeInfo = new RowTypeInfo(typeInformations, filedNames);
QueryExpression queryExpression = QueryExpression.create(paths, null);
RowRowRecordParser parser = RowRowRecordParser.create(rowTypeInfo, queryExpression.getSelectedSeries());
TsFileInputFormat inputFormat = new TsFileInputFormat<>(queryExpression, parser);
```
2. 从输入格式读取数据并打印到标准输出 stdout:
DataStream:
```java
StreamExecutionEnvironment senv = StreamExecutionEnvironment.getExecutionEnvironment();
inputFormat.setFilePath("source.tsfile");
DataStream<Row> source = senv.createInput(inputFormat);
DataStream<String> rowString = source.map(Row::toString);
Iterator<String> result = DataStreamUtils.collect(rowString);
while (result.hasNext()) {
System.out.println(result.next());
}
```
DataSet:
```java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
inputFormat.setFilePath("source.tsfile");
DataSet<Row> source = env.createInput(inputFormat);
List<String> result = source.map(Row::toString).collect();
for (String s : result) {
System.out.println(s);
}
```
#### TSRecordOutputFormat 示例
1. 使用默认的 RowTSRecordConverter 创建 TSRecordOutputFormat 。
```java
String[] filedNames = {
QueryConstant.RESERVED_TIME,
"device_1.sensor_1",
"device_1.sensor_2",
"device_1.sensor_3",
"device_2.sensor_1",
"device_2.sensor_2",
"device_2.sensor_3"
};
TypeInformation[] typeInformations = new TypeInformation[] {
Types.LONG,
Types.LONG,
Types.LONG,
Types.LONG,
Types.LONG,
Types.LONG,
Types.LONG
};
RowTypeInfo rowTypeInfo = new RowTypeInfo(typeInformations, filedNames);
Schema schema = new Schema();
schema.extendTemplate("template", new MeasurementSchema("sensor_1", TSDataType.INT64, TSEncoding.TS_2DIFF));
schema.extendTemplate("template", new MeasurementSchema("sensor_2", TSDataType.INT64, TSEncoding.TS_2DIFF));
schema.extendTemplate("template", new MeasurementSchema("sensor_3", TSDataType.INT64, TSEncoding.TS_2DIFF));
RowTSRecordConverter converter = new RowTSRecordConverter(rowTypeInfo);
TSRecordOutputFormat<Row> outputFormat = new TSRecordOutputFormat<>(schema, converter);
```
2. 通过输出格式写数据:
DataStream:
```java
StreamExecutionEnvironment senv = StreamExecutionEnvironment.getExecutionEnvironment();
senv.setParallelism(1);
List<Tuple7> data = new ArrayList<>(7);
data.add(new Tuple7(1L, 2L, 3L, 4L, 5L, 6L, 7L));
data.add(new Tuple7(2L, 3L, 4L, 5L, 6L, 7L, 8L));
data.add(new Tuple7(3L, 4L, 5L, 6L, 7L, 8L, 9L));
data.add(new Tuple7(4L, 5L, 6L, 7L, 8L, 9L, 10L));
data.add(new Tuple7(6L, 6L, 7L, 8L, 9L, 10L, 11L));
data.add(new Tuple7(7L, 7L, 8L, 9L, 10L, 11L, 12L));
data.add(new Tuple7(8L, 8L, 9L, 10L, 11L, 12L, 13L));
outputFormat.setOutputFilePath(new org.apache.flink.core.fs.Path(path));
DataStream<Tuple7> source = senv.fromCollection(
data, Types.TUPLE(Types.LONG, Types.LONG, Types.LONG, Types.LONG, Types.LONG, Types.LONG, Types.LONG));
source.map(t -> {
Row row = new Row(7);
for (int i = 0; i < 7; i++) {
row.setField(i, t.getField(i));
}
return row;
}).returns(rowTypeInfo).writeUsingOutputFormat(outputFormat);
senv.execute();
```
DataSet:
```java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
List<Tuple7> data = new ArrayList<>(7);
data.add(new Tuple7(1L, 2L, 3L, 4L, 5L, 6L, 7L));
data.add(new Tuple7(2L, 3L, 4L, 5L, 6L, 7L, 8L));
data.add(new Tuple7(3L, 4L, 5L, 6L, 7L, 8L, 9L));
data.add(new Tuple7(4L, 5L, 6L, 7L, 8L, 9L, 10L));
data.add(new Tuple7(6L, 6L, 7L, 8L, 9L, 10L, 11L));
data.add(new Tuple7(7L, 7L, 8L, 9L, 10L, 11L, 12L));
data.add(new Tuple7(8L, 8L, 9L, 10L, 11L, 12L, 13L));
DataSet<Tuple7> source = env.fromCollection(
data, Types.TUPLE(Types.LONG, Types.LONG, Types.LONG, Types.LONG, Types.LONG, Types.LONG, Types.LONG));
source.map(t -> {
Row row = new Row(7);
for (int i = 0; i < 7; i++) {
row.setField(i, t.getField(i));
}
return row;
}).returns(rowTypeInfo).write(outputFormat, path);
env.execute();
```