| <!-- |
| |
| Licensed to the Apache Software Foundation (ASF) under one |
| or more contributor license agreements. See the NOTICE file |
| distributed with this work for additional information |
| regarding copyright ownership. The ASF licenses this file |
| to you under the Apache License, Version 2.0 (the |
| "License"); you may not use this file except in compliance |
| with the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, |
| software distributed under the License is distributed on an |
| "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| KIND, either express or implied. See the License for the |
| specific language governing permissions and limitations |
| under the License. |
| |
| --> |
| |
| # 异常检测 |
| |
| ## IQR |
| |
| ### 函数简介 |
| |
| 本函数用于检验超出上下四分位数1.5倍IQR的数据分布异常。 |
| |
| **函数名:** IQR |
| |
| **输入序列:** 仅支持单个输入序列,类型为 INT32 / INT64 / FLOAT / DOUBLE。 |
| |
| **参数:** |
| |
| + `method`:若设置为 "batch",则将数据全部读入后检测;若设置为 "stream",则需用户提供上下四分位数进行流式检测。默认为 "batch"。 |
| + `q1`:使用流式计算时的下四分位数。 |
| + `q3`:使用流式计算时的上四分位数。 |
| |
| **输出序列**:输出单个序列,类型为 DOUBLE。 |
| |
| **说明**:$IQR=Q_3-Q_1$ |
| |
| ### 使用示例 |
| |
| #### 全数据计算 |
| |
| 输入序列: |
| |
| ``` |
| +-----------------------------+------------+ |
| | Time|root.test.s1| |
| +-----------------------------+------------+ |
| |1970-01-01T08:00:00.100+08:00| 0.0| |
| |1970-01-01T08:00:00.200+08:00| 0.0| |
| |1970-01-01T08:00:00.300+08:00| 1.0| |
| |1970-01-01T08:00:00.400+08:00| -1.0| |
| |1970-01-01T08:00:00.500+08:00| 0.0| |
| |1970-01-01T08:00:00.600+08:00| 0.0| |
| |1970-01-01T08:00:00.700+08:00| -2.0| |
| |1970-01-01T08:00:00.800+08:00| 2.0| |
| |1970-01-01T08:00:00.900+08:00| 0.0| |
| |1970-01-01T08:00:01.000+08:00| 0.0| |
| |1970-01-01T08:00:01.100+08:00| 1.0| |
| |1970-01-01T08:00:01.200+08:00| -1.0| |
| |1970-01-01T08:00:01.300+08:00| -1.0| |
| |1970-01-01T08:00:01.400+08:00| 1.0| |
| |1970-01-01T08:00:01.500+08:00| 0.0| |
| |1970-01-01T08:00:01.600+08:00| 0.0| |
| |1970-01-01T08:00:01.700+08:00| 10.0| |
| |1970-01-01T08:00:01.800+08:00| 2.0| |
| |1970-01-01T08:00:01.900+08:00| -2.0| |
| |1970-01-01T08:00:02.000+08:00| 0.0| |
| +-----------------------------+------------+ |
| ``` |
| |
| 用于查询的 SQL 语句: |
| |
| ```sql |
| select iqr(s1) from root.test |
| ``` |
| |
| 输出序列: |
| |
| ``` |
| +-----------------------------+-----------------+ |
| | Time|iqr(root.test.s1)| |
| +-----------------------------+-----------------+ |
| |1970-01-01T08:00:01.700+08:00| 10.0| |
| +-----------------------------+-----------------+ |
| ``` |
| |
| ## KSigma |
| |
| ### 函数简介 |
| |
| 本函数利用动态 K-Sigma 算法进行异常检测。在一个窗口内,与平均值的差距超过k倍标准差的数据将被视作异常并输出。 |
| |
| **函数名:** KSIGMA |
| |
| **输入序列:** 仅支持单个输入序列,类型为 INT32 / INT64 / FLOAT / DOUBLE |
| |
| **参数:** |
| |
| + `k`:在动态 K-Sigma 算法中,分布异常的标准差倍数阈值,默认值为 3。 |
| + `window`:动态 K-Sigma 算法的滑动窗口大小,默认值为 10000。 |
| |
| |
| **输出序列:** 输出单个序列,类型与输入序列相同。 |
| |
| **提示:** k 应大于 0,否则将不做输出。 |
| |
| ### 使用示例 |
| |
| #### 指定k |
| |
| 输入序列: |
| |
| ``` |
| +-----------------------------+---------------+ |
| | Time|root.test.d1.s1| |
| +-----------------------------+---------------+ |
| |2020-01-01T00:00:02.000+08:00| 0.0| |
| |2020-01-01T00:00:03.000+08:00| 50.0| |
| |2020-01-01T00:00:04.000+08:00| 100.0| |
| |2020-01-01T00:00:06.000+08:00| 150.0| |
| |2020-01-01T00:00:08.000+08:00| 200.0| |
| |2020-01-01T00:00:10.000+08:00| 200.0| |
| |2020-01-01T00:00:14.000+08:00| 200.0| |
| |2020-01-01T00:00:15.000+08:00| 200.0| |
| |2020-01-01T00:00:16.000+08:00| 200.0| |
| |2020-01-01T00:00:18.000+08:00| 200.0| |
| |2020-01-01T00:00:20.000+08:00| 150.0| |
| |2020-01-01T00:00:22.000+08:00| 100.0| |
| |2020-01-01T00:00:26.000+08:00| 50.0| |
| |2020-01-01T00:00:28.000+08:00| 0.0| |
| |2020-01-01T00:00:30.000+08:00| NaN| |
| +-----------------------------+---------------+ |
| ``` |
| |
| 用于查询的 SQL 语句: |
| |
| ```sql |
| select ksigma(s1,"k"="1.0") from root.test.d1 where time <= 2020-01-01 00:00:30 |
| ``` |
| |
| 输出序列: |
| |
| ``` |
| +-----------------------------+---------------------------------+ |
| |Time |ksigma(root.test.d1.s1,"k"="3.0")| |
| +-----------------------------+---------------------------------+ |
| |2020-01-01T00:00:02.000+08:00| 0.0| |
| |2020-01-01T00:00:03.000+08:00| 50.0| |
| |2020-01-01T00:00:26.000+08:00| 50.0| |
| |2020-01-01T00:00:28.000+08:00| 0.0| |
| +-----------------------------+---------------------------------+ |
| ``` |
| |
| ## LOF |
| |
| ### 函数简介 |
| |
| 本函数使用局部离群点检测方法用于查找序列的密度异常。将根据提供的第k距离数及局部离群点因子(lof)阈值,判断输入数据是否为离群点,即异常,并输出各点的 LOF 值。 |
| |
| **函数名:** LOF |
| |
| **输入序列:** 多个输入序列,类型为 INT32 / INT64 / FLOAT / DOUBLE |
| |
| **参数:** |
| |
| + `method`:使用的检测方法。默认为 default,以高维数据计算。设置为 series,将一维时间序列转换为高维数据计算。 |
| + `k`:使用第k距离计算局部离群点因子.默认为 3。 |
| + `window`:每次读取数据的窗口长度。默认为 10000. |
| + `windowsize`:使用series方法时,转化高维数据的维数,即单个窗口的大小。默认为 5。 |
| |
| **输出序列:** 输出单时间序列,类型为DOUBLE。 |
| |
| **提示:** 不完整的数据行会被忽略,不参与计算,也不标记为离群点。 |
| |
| |
| ### 使用示例 |
| |
| #### 默认参数 |
| |
| 输入序列: |
| |
| ``` |
| +-----------------------------+---------------+---------------+ |
| | Time|root.test.d1.s1|root.test.d1.s2| |
| +-----------------------------+---------------+---------------+ |
| |1970-01-01T08:00:00.100+08:00| 0.0| 0.0| |
| |1970-01-01T08:00:00.200+08:00| 0.0| 1.0| |
| |1970-01-01T08:00:00.300+08:00| 1.0| 1.0| |
| |1970-01-01T08:00:00.400+08:00| 1.0| 0.0| |
| |1970-01-01T08:00:00.500+08:00| 0.0| -1.0| |
| |1970-01-01T08:00:00.600+08:00| -1.0| -1.0| |
| |1970-01-01T08:00:00.700+08:00| -1.0| 0.0| |
| |1970-01-01T08:00:00.800+08:00| 2.0| 2.0| |
| |1970-01-01T08:00:00.900+08:00| 0.0| null| |
| +-----------------------------+---------------+---------------+ |
| ``` |
| |
| 用于查询的 SQL 语句: |
| |
| ```sql |
| select lof(s1,s2) from root.test.d1 where time<1000 |
| ``` |
| |
| 输出序列: |
| |
| ``` |
| +-----------------------------+-------------------------------------+ |
| | Time|lof(root.test.d1.s1, root.test.d1.s2)| |
| +-----------------------------+-------------------------------------+ |
| |1970-01-01T08:00:00.100+08:00| 3.8274824267668244| |
| |1970-01-01T08:00:00.200+08:00| 3.0117631741126156| |
| |1970-01-01T08:00:00.300+08:00| 2.838155437762879| |
| |1970-01-01T08:00:00.400+08:00| 3.0117631741126156| |
| |1970-01-01T08:00:00.500+08:00| 2.73518261244453| |
| |1970-01-01T08:00:00.600+08:00| 2.371440975708148| |
| |1970-01-01T08:00:00.700+08:00| 2.73518261244453| |
| |1970-01-01T08:00:00.800+08:00| 1.7561416374270742| |
| +-----------------------------+-------------------------------------+ |
| ``` |
| |
| #### 诊断一维时间序列 |
| |
| 输入序列: |
| |
| ``` |
| +-----------------------------+---------------+ |
| | Time|root.test.d1.s1| |
| +-----------------------------+---------------+ |
| |1970-01-01T08:00:00.100+08:00| 1.0| |
| |1970-01-01T08:00:00.200+08:00| 2.0| |
| |1970-01-01T08:00:00.300+08:00| 3.0| |
| |1970-01-01T08:00:00.400+08:00| 4.0| |
| |1970-01-01T08:00:00.500+08:00| 5.0| |
| |1970-01-01T08:00:00.600+08:00| 6.0| |
| |1970-01-01T08:00:00.700+08:00| 7.0| |
| |1970-01-01T08:00:00.800+08:00| 8.0| |
| |1970-01-01T08:00:00.900+08:00| 9.0| |
| |1970-01-01T08:00:01.000+08:00| 10.0| |
| |1970-01-01T08:00:01.100+08:00| 11.0| |
| |1970-01-01T08:00:01.200+08:00| 12.0| |
| |1970-01-01T08:00:01.300+08:00| 13.0| |
| |1970-01-01T08:00:01.400+08:00| 14.0| |
| |1970-01-01T08:00:01.500+08:00| 15.0| |
| |1970-01-01T08:00:01.600+08:00| 16.0| |
| |1970-01-01T08:00:01.700+08:00| 17.0| |
| |1970-01-01T08:00:01.800+08:00| 18.0| |
| |1970-01-01T08:00:01.900+08:00| 19.0| |
| |1970-01-01T08:00:02.000+08:00| 20.0| |
| +-----------------------------+---------------+ |
| ``` |
| |
| 用于查询的 SQL 语句: |
| |
| ```sql |
| select lof(s1, "method"="series") from root.test.d1 where time<1000 |
| ``` |
| |
| 输出序列: |
| |
| ``` |
| +-----------------------------+--------------------+ |
| | Time|lof(root.test.d1.s1)| |
| +-----------------------------+--------------------+ |
| |1970-01-01T08:00:00.100+08:00| 3.77777777777778| |
| |1970-01-01T08:00:00.200+08:00| 4.32727272727273| |
| |1970-01-01T08:00:00.300+08:00| 4.85714285714286| |
| |1970-01-01T08:00:00.400+08:00| 5.40909090909091| |
| |1970-01-01T08:00:00.500+08:00| 5.94999999999999| |
| |1970-01-01T08:00:00.600+08:00| 6.43243243243243| |
| |1970-01-01T08:00:00.700+08:00| 6.79999999999999| |
| |1970-01-01T08:00:00.800+08:00| 7.0| |
| |1970-01-01T08:00:00.900+08:00| 7.0| |
| |1970-01-01T08:00:01.000+08:00| 6.79999999999999| |
| |1970-01-01T08:00:01.100+08:00| 6.43243243243243| |
| |1970-01-01T08:00:01.200+08:00| 5.94999999999999| |
| |1970-01-01T08:00:01.300+08:00| 5.40909090909091| |
| |1970-01-01T08:00:01.400+08:00| 4.85714285714286| |
| |1970-01-01T08:00:01.500+08:00| 4.32727272727273| |
| |1970-01-01T08:00:01.600+08:00| 3.77777777777778| |
| +-----------------------------+--------------------+ |
| ``` |
| |
| ## MissDetect |
| |
| ### 函数简介 |
| |
| 本函数用于检测数据中的缺失异常。在一些数据中,缺失数据会被线性插值填补,在数据中出现完美的线性片段,且这些片段往往长度较大。本函数通过在数据中发现这些完美线性片段来检测缺失异常。 |
| |
| **函数名:** MISSDETECT |
| |
| **输入序列:** 仅支持单个输入序列,类型为 INT32 / INT64 / FLOAT / DOUBLE。 |
| |
| **参数:** |
| |
| + `minlen`:被标记为异常的完美线性片段的最小长度,是一个大于等于 10 的整数,默认值为 10。 |
| |
| **输出序列:** 输出单个序列,类型为 BOOLEAN,即该数据点是否为缺失异常。 |
| |
| **提示:** 数据中的`NaN`将会被忽略。 |
| |
| |
| ### 使用示例 |
| |
| 输入序列: |
| |
| ``` |
| +-----------------------------+---------------+ |
| | Time|root.test.d2.s2| |
| +-----------------------------+---------------+ |
| |2021-07-01T12:00:00.000+08:00| 0.0| |
| |2021-07-01T12:00:01.000+08:00| 1.0| |
| |2021-07-01T12:00:02.000+08:00| 0.0| |
| |2021-07-01T12:00:03.000+08:00| 1.0| |
| |2021-07-01T12:00:04.000+08:00| 0.0| |
| |2021-07-01T12:00:05.000+08:00| 0.0| |
| |2021-07-01T12:00:06.000+08:00| 0.0| |
| |2021-07-01T12:00:07.000+08:00| 0.0| |
| |2021-07-01T12:00:08.000+08:00| 0.0| |
| |2021-07-01T12:00:09.000+08:00| 0.0| |
| |2021-07-01T12:00:10.000+08:00| 0.0| |
| |2021-07-01T12:00:11.000+08:00| 0.0| |
| |2021-07-01T12:00:12.000+08:00| 0.0| |
| |2021-07-01T12:00:13.000+08:00| 0.0| |
| |2021-07-01T12:00:14.000+08:00| 0.0| |
| |2021-07-01T12:00:15.000+08:00| 0.0| |
| |2021-07-01T12:00:16.000+08:00| 1.0| |
| |2021-07-01T12:00:17.000+08:00| 0.0| |
| |2021-07-01T12:00:18.000+08:00| 1.0| |
| |2021-07-01T12:00:19.000+08:00| 0.0| |
| |2021-07-01T12:00:20.000+08:00| 1.0| |
| +-----------------------------+---------------+ |
| ``` |
| |
| 用于查询的SQL语句: |
| |
| ```sql |
| select missdetect(s2,'minlen'='10') from root.test.d2 |
| ``` |
| |
| 输出序列: |
| |
| ``` |
| +-----------------------------+------------------------------------------+ |
| | Time|missdetect(root.test.d2.s2, "minlen"="10")| |
| +-----------------------------+------------------------------------------+ |
| |2021-07-01T12:00:00.000+08:00| false| |
| |2021-07-01T12:00:01.000+08:00| false| |
| |2021-07-01T12:00:02.000+08:00| false| |
| |2021-07-01T12:00:03.000+08:00| false| |
| |2021-07-01T12:00:04.000+08:00| true| |
| |2021-07-01T12:00:05.000+08:00| true| |
| |2021-07-01T12:00:06.000+08:00| true| |
| |2021-07-01T12:00:07.000+08:00| true| |
| |2021-07-01T12:00:08.000+08:00| true| |
| |2021-07-01T12:00:09.000+08:00| true| |
| |2021-07-01T12:00:10.000+08:00| true| |
| |2021-07-01T12:00:11.000+08:00| true| |
| |2021-07-01T12:00:12.000+08:00| true| |
| |2021-07-01T12:00:13.000+08:00| true| |
| |2021-07-01T12:00:14.000+08:00| true| |
| |2021-07-01T12:00:15.000+08:00| true| |
| |2021-07-01T12:00:16.000+08:00| false| |
| |2021-07-01T12:00:17.000+08:00| false| |
| |2021-07-01T12:00:18.000+08:00| false| |
| |2021-07-01T12:00:19.000+08:00| false| |
| |2021-07-01T12:00:20.000+08:00| false| |
| +-----------------------------+------------------------------------------+ |
| ``` |
| |
| ## Range |
| |
| ### 函数简介 |
| |
| 本函数用于查找时间序列的范围异常。将根据提供的上界与下界,判断输入数据是否越界,即异常,并输出所有异常点为新的时间序列。 |
| |
| **函数名:** RANGE |
| |
| **输入序列:** 仅支持单个输入序列,类型为 INT32 / INT64 / FLOAT / DOUBLE |
| |
| **参数:** |
| |
| + `lower_bound`:范围异常检测的下界。 |
| + `upper_bound`:范围异常检测的上界。 |
| |
| **输出序列:** 输出单个序列,类型与输入序列相同。 |
| |
| **提示:** 应满足`upper_bound`大于`lower_bound`,否则将不做输出。 |
| |
| |
| ### 使用示例 |
| |
| #### 指定上界与下界 |
| |
| 输入序列: |
| |
| ``` |
| +-----------------------------+---------------+ |
| | Time|root.test.d1.s1| |
| +-----------------------------+---------------+ |
| |2020-01-01T00:00:02.000+08:00| 100.0| |
| |2020-01-01T00:00:03.000+08:00| 101.0| |
| |2020-01-01T00:00:04.000+08:00| 102.0| |
| |2020-01-01T00:00:06.000+08:00| 104.0| |
| |2020-01-01T00:00:08.000+08:00| 126.0| |
| |2020-01-01T00:00:10.000+08:00| 108.0| |
| |2020-01-01T00:00:14.000+08:00| 112.0| |
| |2020-01-01T00:00:15.000+08:00| 113.0| |
| |2020-01-01T00:00:16.000+08:00| 114.0| |
| |2020-01-01T00:00:18.000+08:00| 116.0| |
| |2020-01-01T00:00:20.000+08:00| 118.0| |
| |2020-01-01T00:00:22.000+08:00| 120.0| |
| |2020-01-01T00:00:26.000+08:00| 124.0| |
| |2020-01-01T00:00:28.000+08:00| 126.0| |
| |2020-01-01T00:00:30.000+08:00| NaN| |
| +-----------------------------+---------------+ |
| ``` |
| |
| 用于查询的 SQL 语句: |
| |
| ```sql |
| select range(s1,"lower_bound"="101.0","upper_bound"="125.0") from root.test.d1 where time <= 2020-01-01 00:00:30 |
| ``` |
| |
| 输出序列: |
| |
| ``` |
| +-----------------------------+------------------------------------------------------------------+ |
| |Time |range(root.test.d1.s1,"lower_bound"="101.0","upper_bound"="125.0")| |
| +-----------------------------+------------------------------------------------------------------+ |
| |2020-01-01T00:00:02.000+08:00| 100.0| |
| |2020-01-01T00:00:28.000+08:00| 126.0| |
| +-----------------------------+------------------------------------------------------------------+ |
| ``` |
| |
| ## TwoSidedFilter |
| |
| ### 函数简介 |
| |
| 本函数基于双边窗口检测法对输入序列中的异常点进行过滤。 |
| |
| **函数名:** TWOSIDEDFILTER |
| |
| **输出序列:** 仅支持单个输入序列,类型为 INT32 / INT64 / FLOAT / DOUBLE |
| |
| **输出序列:** 输出单个序列,类型与输入相同,是输入序列去除异常点后的结果。 |
| |
| **参数:** |
| |
| - `len`:双边窗口检测法中的窗口大小,取值范围为正整数,默认值为 5.如当`len`=3 时,算法向前、向后各取长度为3的窗口,在窗口中计算异常度。 |
| - `threshold`:异常度的阈值,取值范围为(0,1),默认值为 0.3。阈值越高,函数对于异常度的判定标准越严格。 |
| |
| ### 使用示例 |
| |
| 输入序列: |
| |
| ``` |
| +-----------------------------+------------+ |
| | Time|root.test.s0| |
| +-----------------------------+------------+ |
| |1970-01-01T08:00:00.000+08:00| 2002.0| |
| |1970-01-01T08:00:01.000+08:00| 1946.0| |
| |1970-01-01T08:00:02.000+08:00| 1958.0| |
| |1970-01-01T08:00:03.000+08:00| 2012.0| |
| |1970-01-01T08:00:04.000+08:00| 2051.0| |
| |1970-01-01T08:00:05.000+08:00| 1898.0| |
| |1970-01-01T08:00:06.000+08:00| 2014.0| |
| |1970-01-01T08:00:07.000+08:00| 2052.0| |
| |1970-01-01T08:00:08.000+08:00| 1935.0| |
| |1970-01-01T08:00:09.000+08:00| 1901.0| |
| |1970-01-01T08:00:10.000+08:00| 1972.0| |
| |1970-01-01T08:00:11.000+08:00| 1969.0| |
| |1970-01-01T08:00:12.000+08:00| 1984.0| |
| |1970-01-01T08:00:13.000+08:00| 2018.0| |
| |1970-01-01T08:00:37.000+08:00| 1484.0| |
| |1970-01-01T08:00:38.000+08:00| 1055.0| |
| |1970-01-01T08:00:39.000+08:00| 1050.0| |
| |1970-01-01T08:01:05.000+08:00| 1023.0| |
| |1970-01-01T08:01:06.000+08:00| 1056.0| |
| |1970-01-01T08:01:07.000+08:00| 978.0| |
| |1970-01-01T08:01:08.000+08:00| 1050.0| |
| |1970-01-01T08:01:09.000+08:00| 1123.0| |
| |1970-01-01T08:01:10.000+08:00| 1150.0| |
| |1970-01-01T08:01:11.000+08:00| 1034.0| |
| |1970-01-01T08:01:12.000+08:00| 950.0| |
| |1970-01-01T08:01:13.000+08:00| 1059.0| |
| +-----------------------------+------------+ |
| ``` |
| |
| 用于查询的 SQL 语句: |
| |
| ```sql |
| select TwoSidedFilter(s0, 'len'='5', 'threshold'='0.3') from root.test |
| ``` |
| |
| 输出序列: |
| |
| ``` |
| +-----------------------------+------------+ |
| | Time|root.test.s0| |
| +-----------------------------+------------+ |
| |1970-01-01T08:00:00.000+08:00| 2002.0| |
| |1970-01-01T08:00:01.000+08:00| 1946.0| |
| |1970-01-01T08:00:02.000+08:00| 1958.0| |
| |1970-01-01T08:00:03.000+08:00| 2012.0| |
| |1970-01-01T08:00:04.000+08:00| 2051.0| |
| |1970-01-01T08:00:05.000+08:00| 1898.0| |
| |1970-01-01T08:00:06.000+08:00| 2014.0| |
| |1970-01-01T08:00:07.000+08:00| 2052.0| |
| |1970-01-01T08:00:08.000+08:00| 1935.0| |
| |1970-01-01T08:00:09.000+08:00| 1901.0| |
| |1970-01-01T08:00:10.000+08:00| 1972.0| |
| |1970-01-01T08:00:11.000+08:00| 1969.0| |
| |1970-01-01T08:00:12.000+08:00| 1984.0| |
| |1970-01-01T08:00:13.000+08:00| 2018.0| |
| |1970-01-01T08:01:05.000+08:00| 1023.0| |
| |1970-01-01T08:01:06.000+08:00| 1056.0| |
| |1970-01-01T08:01:07.000+08:00| 978.0| |
| |1970-01-01T08:01:08.000+08:00| 1050.0| |
| |1970-01-01T08:01:09.000+08:00| 1123.0| |
| |1970-01-01T08:01:10.000+08:00| 1150.0| |
| |1970-01-01T08:01:11.000+08:00| 1034.0| |
| |1970-01-01T08:01:12.000+08:00| 950.0| |
| |1970-01-01T08:01:13.000+08:00| 1059.0| |
| +-----------------------------+------------+ |
| ``` |