The versions required for Spark and Java are as follow:
| Spark Version | Scala Version | Java Version | TsFile |
|---|---|---|---|
>= 2.2 | 2.11 | 1.8 | 0.10.0 |
mvn clean scala:compile compile install
<dependency>
<groupId>org.apache.iotdb</groupId>
<artifactId>spark-iotdb-connector</artifactId>
<version>0.10.0</version>
</dependency>
spark-shell --jars spark-iotdb-connector-0.10.0.jar,iotdb-jdbc-0.10.0-jar-with-dependencies.jar
import org.apache.iotdb.spark.db._
val df = spark.read.format("org.apache.iotdb.spark.db").option("url","jdbc:iotdb://127.0.0.1:6667/").option("sql","select * from root").load
df.printSchema()
df.show()
spark-shell --jars spark-iotdb-connector-0.10.0.jar,iotdb-jdbc-0.10.0-jar-with-dependencies.jar
import org.apache.iotdb.spark.db._
val df = spark.read.format("org.apache.iotdb.spark.db").option("url","jdbc:iotdb://127.0.0.1:6667/").option("sql","select * from root").
option("lowerBound", [lower bound of time that you want query(include)]).option("upperBound", [upper bound of time that you want query(include)]).
option("numPartition", [the partition number you want]).load
df.printSchema()
df.show()
Take the following TsFile structure as an example: There are three Measurements in the TsFile schema: status, temperature, and hardware. The basic information of these three measurements is as follows:
| name | type | encode |
|---|---|---|
| status | Boolean | PLAIN |
| temperature | Float | RLE |
| hardware | Text | PLAIN |
The existing data in the TsFile is as follows:
| root.ln.wf01.wt01 | root.ln.wf02.wt02 | ||||||
|---|---|---|---|---|---|---|---|
| status | temperature | hardware | status | ||||
| time | value | time | value | time | value | ||
| 1 | True | 1 | 2.2 | 2 | “aaa” | 1 | True |
| 3 | True | 2 | 2.2 | 4 | “bbb” | 2 | False |
| 5 | False | 3 | 2.1 | 6 | “ccc” | 4 | True |
The wide(default) table form is as follows:
| time | root.ln.wf02.wt02.temperature | root.ln.wf02.wt02.status | root.ln.wf02.wt02.hardware | root.ln.wf01.wt01.temperature | root.ln.wf01.wt01.status | root.ln.wf01.wt01.hardware |
|---|---|---|---|---|---|---|
| 1 | null | true | null | 2.2 | true | null |
| 2 | null | false | aaa | 2.2 | null | null |
| 3 | null | null | null | 2.1 | true | null |
| 4 | null | true | bbb | null | null | null |
| 5 | null | null | null | null | false | null |
| 6 | null | null | ccc | null | null | null |
You can also use narrow table form which as follows: (You can see part 4 about how to use narrow form)
| time | device_name | status | hardware | temperature |
|---|---|---|---|---|
| 1 | root.ln.wf02.wt01 | true | null | 2.2 |
| 1 | root.ln.wf02.wt02 | true | null | null |
| 2 | root.ln.wf02.wt01 | null | null | 2.2 |
| 2 | root.ln.wf02.wt02 | false | aaa | null |
| 3 | root.ln.wf02.wt01 | true | null | 2.1 |
| 4 | root.ln.wf02.wt02 | true | bbb | null |
| 5 | root.ln.wf02.wt01 | false | null | null |
| 6 | root.ln.wf02.wt02 | null | ccc | null |
import org.apache.iotdb.spark.db._
val wide_df = spark.read.format("org.apache.iotdb.spark.db").option("url", "jdbc:iotdb://127.0.0.1:6667/").option("sql", "select * from root where time < 1100 and time > 1000").load
val narrow_df = Transformer.toNarrowForm(spark, wide_df)
import org.apache.iotdb.spark.db._ val wide_df = Transformer.toWideForm(spark, narrow_df)
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.iotdb.spark.db.*
public class Example {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("Build a DataFrame from Scratch")
.master("local[*]")
.getOrCreate();
Dataset<Row> df = spark.read().format("org.apache.iotdb.spark.db")
.option("url","jdbc:iotdb://127.0.0.1:6667/")
.option("sql","select * from root").load();
df.printSchema();
df.show();
Dataset<Row> narrowTable = Transformer.toNarrowForm(spark, df)
narrowTable.show()
}
}