| <!-- |
| |
| Licensed to the Apache Software Foundation (ASF) under one |
| or more contributor license agreements. See the NOTICE file |
| distributed with this work for additional information |
| regarding copyright ownership. The ASF licenses this file |
| to you under the Apache License, Version 2.0 (the |
| "License"); you may not use this file except in compliance |
| with the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, |
| software distributed under the License is distributed on an |
| "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| KIND, either express or implied. See the License for the |
| specific language governing permissions and limitations |
| under the License. |
| |
| --> |
| |
| # 窗口函数 |
| |
| IoTDB 针对时序数据的特色分析场景,提供了窗口函数能力,为时序数据的深度挖掘与复杂计算提供了灵活高效的解决方案。下文将对该功能进行详细的介绍。 |
| |
| ## 1. 功能介绍 |
| |
| 窗口函数(Window Function) 是一种基于与当前行相关的特定行集合(称为“窗口”) 对每一行进行计算的特殊函数。它将分组操作(`PARTITION BY`)、排序(`ORDER BY`)与可定义的计算范围(窗口框架 `FRAME`)结合,在不折叠原始数据行的前提下实现复杂的跨行计算。常用于数据分析场景,比如排名、累计和、移动平均等操作。 |
| |
| > 注意:该功能从 V 2.0.5 版本开始提供。 |
| |
| 例如,某场景下需要查询不同设备的功耗累加值,即可通过窗口函数来实现。 |
| |
| ```SQL |
| -- 原始数据 |
| +-----------------------------+------+-----+ |
| | time|device| flow| |
| +-----------------------------+------+-----+ |
| |1970-01-01T08:00:00.000+08:00| d0| 3| |
| |1970-01-01T08:00:00.001+08:00| d0| 5| |
| |1970-01-01T08:00:00.002+08:00| d0| 3| |
| |1970-01-01T08:00:00.003+08:00| d0| 1| |
| |1970-01-01T08:00:00.004+08:00| d1| 2| |
| |1970-01-01T08:00:00.005+08:00| d1| 4| |
| +-----------------------------+------+-----+ |
| |
| -- 创建表并插入数据 |
| CREATE TABLE device_flow(device String tag, flow INT32 FIELD); |
| insert into device_flow(time, device ,flow ) values ('1970-01-01T08:00:00.000+08:00','d0',3),('1970-01-01T08:00:01.000+08:00','d0',5),('1970-01-01T08:00:02.000+08:00','d0',3),('1970-01-01T08:00:03.000+08:00','d0',1),('1970-01-01T08:00:04.000+08:00','d1',2),('1970-01-01T08:00:05.000+08:00','d1',4); |
| |
| |
| --执行窗口函数查询 |
| SELECT *, sum(flow) OVER(PARTITION BY device ORDER BY flow) as sum FROM device_flow; |
| ``` |
| |
| 经过分组、排序、计算(步骤拆解如下图所示), |
| |
|  |
| |
| 即可得到期望结果: |
| |
| ```SQL |
| +-----------------------------+------+----+----+ |
| | time|device|flow| sum| |
| +-----------------------------+------+----+----+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 2.0| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 6.0| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 1.0| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 7.0| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 7.0| |
| |1970-01-01T08:00:01.000+08:00| d0| 5|12.0| |
| +-----------------------------+------+----+----+ |
| ``` |
| |
| ## 2. 功能定义 |
| ### 2.1 SQL 定义 |
| |
| ```SQL |
| windowDefinition |
| : name=identifier AS '(' windowSpecification ')' |
| ; |
| |
| windowSpecification |
| : (existingWindowName=identifier)? |
| (PARTITION BY partition+=expression (',' partition+=expression)*)? |
| (ORDER BY sortItem (',' sortItem)*)? |
| windowFrame? |
| ; |
| |
| windowFrame |
| : frameExtent |
| ; |
| |
| frameExtent |
| : frameType=RANGE start=frameBound |
| | frameType=ROWS start=frameBound |
| | frameType=GROUPS start=frameBound |
| | frameType=RANGE BETWEEN start=frameBound AND end=frameBound |
| | frameType=ROWS BETWEEN start=frameBound AND end=frameBound |
| | frameType=GROUPS BETWEEN start=frameBound AND end=frameBound |
| ; |
| |
| frameBound |
| : UNBOUNDED boundType=PRECEDING #unboundedFrame |
| | UNBOUNDED boundType=FOLLOWING #unboundedFrame |
| | CURRENT ROW #currentRowBound |
| | expression boundType=(PRECEDING | FOLLOWING) #boundedFrame |
| ; |
| ``` |
| |
| ### 2.2 窗口定义 |
| #### 2.2.1 Partition |
| |
| `PARTITION BY` 用于将数据分为多个独立、不相关的「组」,窗口函数只能访问并操作其所属分组内的数据,无法访问其它分组。该子句是可选的;如果未显式指定,则默认将所有数据分到同一组。值得注意的是,与 `GROUP BY` 通过聚合函数将一组数据规约成一行不同,`PARTITION BY` 的窗口函数**并不会影响组内的行数。** |
| |
| * 示例 |
| |
| 查询语句: |
| |
| ```SQL |
| IoTDB> SELECT *, count(flow) OVER (PARTITION BY device) as count FROM device_flow; |
| ``` |
| |
| 拆解步骤: |
| |
|  |
| |
| 查询结果: |
| |
| ```SQL |
| +-----------------------------+------+----+-----+ |
| | time|device|flow|count| |
| +-----------------------------+------+----+-----+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 2| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 2| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 4| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 4| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 4| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 4| |
| +-----------------------------+------+----+-----+ |
| ``` |
| |
| #### 2.2.2 Ordering |
| |
| `ORDER BY` 用于对 partition 内的数据进行排序。排序后,相等的行被称为 peers。peers 会影响窗口函数的行为,例如不同 rank function 对 peers 的处理不同;不同 frame 的划分方式对于 peers 的处理也不同。该子句是可选的。 |
| |
| * 示例 |
| |
| 查询语句: |
| |
| ```SQL |
| IoTDB> SELECT *, rank() OVER (PARTITION BY device ORDER BY flow) as rank FROM device_flow; |
| ``` |
| |
| 拆解步骤: |
| |
|  |
| |
| 查询结果: |
| |
| ```SQL |
| +-----------------------------+------+----+----+ |
| | time|device|flow|rank| |
| +-----------------------------+------+----+----+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 1| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 2| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 1| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 2| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 2| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 4| |
| +-----------------------------+------+----+----+ |
| ``` |
| |
| #### 2.2.3 Framing |
| |
| 对于 partition 中的每一行,窗口函数都会在相应的一组行上求值,这些行称为 Frame(即 Window Function 在每一行上的输入域)。Frame 可以手动指定,指定时涉及两个属性,具体说明如下。 |
| |
| <table style="text-align: left;"> |
| <tbody> |
| <tr> |
| <th>Frame 属性</th> |
| <th>属性值</th> |
| <th>值描述</th> |
| </tr> |
| <tr> |
| <td rowspan="3">类型</td> |
| <td>ROWS</td> |
| <td>通过行号来划分 frame</td> |
| </tr> |
| <tr> |
| <td>GROUPS</td> |
| <td>通过 peers 来划分 frame,即值相同的行视为同等的存在。peers 中所有的行分为一个组,叫做 peer group</td> |
| </tr> |
| <tr> |
| <td>RANGE</td> |
| <td>通过值来划分 frame</td> |
| </tr> |
| <tr> |
| <td rowspan="5">起始和终止位置</td> |
| <td>UNBOUNDED PRECEDING</td> |
| <td>整个 partition 的第一行</td> |
| </tr> |
| <tr> |
| <td>offset PRECEDING</td> |
| <td>代表前面和当前行「距离」为 offset 的行</td> |
| </tr> |
| <tr> |
| <td>CURRENT ROW</td> |
| <td>当前行</td> |
| </tr> |
| <tr> |
| <td>offset FOLLOWING</td> |
| <td>代表后面和当前行「距离」为 offset 的行</td> |
| </tr> |
| <tr> |
| <td>UNBOUNDED FOLLOWING</td> |
| <td>整个 partition 的最后一行</td> |
| </tr> |
| </tbody> |
| </table> |
| |
| 其中,`CURRENT ROW`、`PRECEDING N` 和 `FOLLOWING N` 的含义随着 frame 种类的不同而不同,如下表所示: |
| |
| | | `ROWS` | `GROUPS` | `RANGE` | |
| |--------------------|------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| |
| | `CURRENT ROW` | 当前行 | 由于 peer group 包含多行,因此这个选项根据作用于 frame\_start 和 frame\_end 而不同:* frame\_start:peer group 的第一行;* frame\_end:peer group 的最后一行。 | 和 GROUPS 相同,根据作用于 frame\_start 和 frame\_end 而不同:* frame\_start:peer group 的第一行;* frame\_end:peer group 的最后一行。 | |
| | `offset PRECEDING` | 前 offset 行 | 前 offset 个 peer group; | 前面与当前行的值之差小于等于 offset 就分为一个 frame | |
| | `offset FOLLOWING` | 后 offset 行 | 后 offset 个 peer group。 | 后面与当前行的值之差小于等于 offset 就分为一个 frame | |
| |
| 语法格式如下: |
| |
| ```SQL |
| -- 同时指定 frame_start 和 frame_end |
| { RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end |
| -- 仅指定 frame_start,frame_end 为 CURRENT ROW |
| { RANGE | ROWS | GROUPS } frame_start |
| ``` |
| |
| 若未手动指定 Frame,Frame 的默认划分规则如下: |
| |
| * 当窗口函数使用 ORDER BY 时:默认 Frame 为 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW (即从窗口的第一行到当前行)。例如:RANK() OVER(PARTITION BY COL1 0RDER BY COL2) 中,Frame 默认包含分区内当前行及之前的所有行。 |
| * 当窗口函数不使用 ORDER BY 时:默认 Frame 为 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING (即整个窗口的所有行)。例如:AVG(COL2) OVER(PARTITION BY col1) 中,Frame 默认包含分区内的所有行,计算整个分区的平均值。 |
| |
| 需要注意的是,当 Frame 类型为 GROUPS 或 RANGE 时,需要指定 `ORDER BY`,区别在于 GROUPS 中的 ORDER BY 可以涉及多个字段,而 RANGE 需要计算,所以只能指定一个字段。 |
| |
| * 示例 |
| |
| 1. Frame 类型为 ROWS |
| |
| 查询语句: |
| |
| ```SQL |
| IoTDB> SELECT *, count(flow) OVER(PARTITION BY device ROWS 1 PRECEDING) as count FROM device_flow; |
| ``` |
| |
| 拆解步骤: |
| |
| * 取前一行和当前行作为 Frame |
| * 对于 partition 的第一行,由于没有前一行,所以整个 Frame 只有它一行,返回 1; |
| * 对于 partition 的其他行,整个 Frame 包含当前行和它的前一行,返回 2: |
| |
|  |
| |
| 查询结果: |
| |
| ```SQL |
| +-----------------------------+------+----+-----+ |
| | time|device|flow|count| |
| +-----------------------------+------+----+-----+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 1| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 2| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 1| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 2| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 2| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 2| |
| +-----------------------------+------+----+-----+ |
| ``` |
| |
| 2. Frame 类型为 GROUPS |
| |
| 查询语句: |
| |
| ```SQL |
| IoTDB> SELECT *, count(flow) OVER(PARTITION BY device ORDER BY flow GROUPS BETWEEN 1 PRECEDING AND CURRENT ROW) as count FROM device_flow; |
| ``` |
| |
| 拆解步骤: |
| |
| * 取前一个 peer group 和当前 peer group 作为 Frame,那么以 device 为 d0 的 partition 为例(d1同理),对于 count 行数: |
| * 对于 flow 为 1 的 peer group,由于它也没比它小的 peer group 了,所以整个 Frame 就它一行,返回 1; |
| * 对于 flow 为 3 的 peer group,它本身包含 2 行,前一个 peer group 就是 flow 为 1 的,就一行,因此整个 Frame 三行,返回 3; |
| * 对于 flow 为 5 的 peer group,它本身包含 1 行,前一个 peer group 就是 flow 为 3 的,共两行,因此整个 Frame 三行,返回 3。 |
| |
|  |
| |
| 查询结果: |
| |
| ```SQL |
| +-----------------------------+------+----+-----+ |
| | time|device|flow|count| |
| +-----------------------------+------+----+-----+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 1| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 2| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 1| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 3| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 3| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 3| |
| +-----------------------------+------+----+-----+ |
| ``` |
| |
| 3. Frame 类型为 RANGE |
| |
| 查询语句: |
| |
| ```SQL |
| IoTDB> SELECT *,count(flow) OVER(PARTITION BY device ORDER BY flow RANGE BETWEEN 2 PRECEDING AND CURRENT ROW) as count FROM device_flow; |
| ``` |
| |
| 拆解步骤: |
| |
| * 把比当前行数据**小于等于 2 **的分为同一个 Frame,那么以 device 为 d0 的 partition 为例(d1 同理),对于 count 行数: |
| * 对于 flow 为 1 的行,由于它是最小的行了,所以整个 Frame 就它一行,返回 1; |
| * 对于 flow 为 3 的行,注意 CURRENT ROW 是作为 frame\_end 存在,因此是整个 peer group 的最后一行,符合要求比它小的共 1 行,然后 peer group 有 2 行,所以整个 Frame 共 3 行,返回 3; |
| * 对于 flow 为 5 的行,它本身包含 1 行,符合要求的比它小的共 2 行,所以整个 Frame 共 3 行,返回 3。 |
| |
|  |
| |
| 查询结果: |
| |
| ```SQL |
| +-----------------------------+------+----+-----+ |
| | time|device|flow|count| |
| +-----------------------------+------+----+-----+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 1| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 2| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 1| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 3| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 3| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 3| |
| +-----------------------------+------+----+-----+ |
| ``` |
| |
| ## 3. 内置的窗口函数 |
| |
| <table style="text-align: left;"> |
| <tbody> |
| <tr> |
| <th>窗口函数分类</th> |
| <th>窗口函数名</th> |
| <th>函数定义</th> |
| <th>是否支持 FRAME 子句</th> |
| </tr> |
| <tr> |
| <td rowspan="1">Aggregate Function</td> |
| <td>所有内置聚合函数</td> |
| <td>对一组值进行聚合计算,得到单个聚合结果。</td> |
| <td>是</td> |
| </tr> |
| <tr> |
| <td rowspan="5">Value Function</td> |
| <td>first_value</td> |
| <td>返回 frame 的第一个值,如果指定了 IGNORE NULLS 需要跳过前缀的 NULL</td> |
| <td>是</td> |
| </tr> |
| <tr> |
| <td>last_value</td> |
| <td>返回 frame 的最后一个值,如果指定了 IGNORE NULLS 需要跳过后缀的 NULL</td> |
| <td>是</td> |
| </tr> |
| <tr> |
| <td>nth_value</td> |
| <td>返回 frame 的第 n 个元素(注意 n 是从 1 开始),如果有 IGNORE NULLS 需要跳过 NULL</td> |
| <td>是</td> |
| </tr> |
| <tr> |
| <td>lead</td> |
| <td>返回当前行的后 offset 个元素(如果有 IGNORE NULLS 则 NULL 不考虑在内),如果没有这样的元素(超过 partition 范围),则返回 default</td> |
| <td>否</td> |
| </tr> |
| <tr> |
| <td>lag</td> |
| <td>返回当前行的前 offset 个元素(如果有 IGNORE NULLS 则 NULL 不考虑在内),如果没有这样的元素(超过 partition 范围),则返回 default</td> |
| <td>否</td> |
| </tr> |
| <tr> |
| <td rowspan="6">Rank Function</td> |
| <td>rank</td> |
| <td>返回当前行在整个 partition 中的序号,值相同的行序号相同,序号之间可能有 gap</td> |
| <td>否</td> |
| </tr> |
| <tr> |
| <td>dense_rank</td> |
| <td>返回当前行在整个 partition 中的序号,值相同的行序号相同,序号之间没有 gap</td> |
| <td>否</td> |
| </tr> |
| <tr> |
| <td>row_number</td> |
| <td>返回当前行在整个 partition 中的行号,注意行号从 1 开始</td> |
| <td>否</td> |
| </tr> |
| <tr> |
| <td>percent_rank</td> |
| <td>以百分比的形式,返回当前行的值在整个 partition 中的序号;即 (rank() - 1) / (n - 1),其中 n 是整个 partition 的行数</td> |
| <td>否</td> |
| </tr> |
| <tr> |
| <td>cume_dist</td> |
| <td>以百分比的形式,返回当前行的值在整个 partition 中的序号;即 (小于等于它的行数) / n </td> |
| <td>否</td> |
| </tr> |
| <tr> |
| <td>ntile</td> |
| <td>指定 n,给每一行进行 1~n 的编号。</td> |
| <td>否</td> |
| </tr> |
| </tbody> |
| </table> |
| |
| ### 3.1 Aggregate Function |
| |
| 所有内置聚合函数,如 `sum()`、`avg()`、`min()`、`max()` 都能当作 Window Function 使用。 |
| |
| > 注意:与 GROUP BY 不同,Window Function 中每一行都有相应的输出 |
| |
| 示例: |
| |
| ```SQL |
| IoTDB> SELECT *, sum(flow) OVER (PARTITION BY device ORDER BY flow) as sum FROM device_flow; |
| +-----------------------------+------+----+----+ |
| | time|device|flow| sum| |
| +-----------------------------+------+----+----+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 2.0| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 6.0| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 1.0| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 7.0| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 7.0| |
| |1970-01-01T08:00:01.000+08:00| d0| 5|12.0| |
| +-----------------------------+------+----+----+ |
| ``` |
| |
| ### 3.2 Value Function |
| 1. `first_value` |
| |
| * 函数名:`first_value(value) [IGNORE NULLS]` |
| * 定义:返回 frame 的第一个值,如果指定了 IGNORE NULLS 需要跳过前缀的 NULL; |
| * 示例: |
| |
| ```SQL |
| IoTDB> SELECT *, first_value(flow) OVER w as first_value FROM device_flow WINDOW w AS (PARTITION BY device ORDER BY flow ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING); |
| +-----------------------------+------+----+-----------+ |
| | time|device|flow|first_value| |
| +-----------------------------+------+----+-----------+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 2| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 2| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 1| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 1| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 3| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 3| |
| +-----------------------------+------+----+-----------+ |
| ``` |
| |
| 2. `last_value` |
| |
| * 函数名:`last_value(value) [IGNORE NULLS]` |
| * 定义:返回 frame 的最后一个值,如果指定了 IGNORE NULLS 需要跳过后缀的 NULL; |
| * 示例: |
| |
| ```SQL |
| IoTDB> SELECT *, last_value(flow) OVER w as last_value FROM device_flow WINDOW w AS (PARTITION BY device ORDER BY flow ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING); |
| +-----------------------------+------+----+----------+ |
| | time|device|flow|last_value| |
| +-----------------------------+------+----+----------+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 4| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 4| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 3| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 3| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 5| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 5| |
| +-----------------------------+------+----+----------+ |
| ``` |
| |
| 3. `nth_value` |
| |
| * 函数名:`nth_value(value, n) [IGNORE NULLS]` |
| * 定义:返回 frame 的第 n 个元素(注意 n 是从 1 开始),如果有 IGNORE NULLS 需要跳过 NULL; |
| * 示例: |
| |
| ```SQL |
| IoTDB> SELECT *, nth_value(flow, 2) OVER w as nth_values FROM device_flow WINDOW w AS (PARTITION BY device ORDER BY flow ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING); |
| +-----------------------------+------+----+----------+ |
| | time|device|flow|nth_values| |
| +-----------------------------+------+----+----------+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 4| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 4| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 3| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 3| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 3| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 5| |
| +-----------------------------+------+----+----------+ |
| ``` |
| |
| 4. lead |
| |
| * 函数名:`lead(value[, offset[, default]]) [IGNORE NULLS]` |
| * 定义:返回当前行的后 offset 个元素(如果有 IGNORE NULLS 则 NULL 不考虑在内),如果没有这样的元素(超过 partition 范围),则返回 default;offset 的默认值为 1,default 的默认值为 NULL。 |
| * lead 函数需要需要一个 ORDER BY 窗口子句 |
| * 示例: |
| |
| ```SQL |
| IoTDB> SELECT *, lead(flow) OVER w as lead FROM device_flow WINDOW w AS(PARTITION BY device ORDER BY time); |
| +-----------------------------+------+----+----+ |
| | time|device|flow|lead| |
| +-----------------------------+------+----+----+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 4| |
| |1970-01-01T08:00:05.000+08:00| d1| 4|null| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 5| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 3| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 1| |
| |1970-01-01T08:00:03.000+08:00| d0| 1|null| |
| +-----------------------------+------+----+----+ |
| ``` |
| |
| 5. lag |
| |
| * 函数名:`lag(value[, offset[, default]]) [IGNORE NULLS]` |
| * 定义:返回当前行的前 offset 个元素(如果有 IGNORE NULLS 则 NULL 不考虑在内),如果没有这样的元素(超过 partition 范围),则返回 default;offset 的默认值为 1,default 的默认值为 NULL。 |
| * lag 函数需要需要一个 ORDER BY 窗口子句 |
| * 示例: |
| |
| ```SQL |
| IoTDB> SELECT *, lag(flow) OVER w as lag FROM device_flow WINDOW w AS(PARTITION BY device ORDER BY device); |
| +-----------------------------+------+----+----+ |
| | time|device|flow| lag| |
| +-----------------------------+------+----+----+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2|null| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 2| |
| |1970-01-01T08:00:00.000+08:00| d0| 3|null| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 3| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 5| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 3| |
| +-----------------------------+------+----+----+ |
| ``` |
| |
| ### 3.3 Rank Function |
| 1. rank |
| |
| * 函数名:`rank()` |
| * 定义:返回当前行在整个 partition 中的序号,值相同的行序号相同,序号之间可能有 gap; |
| * 示例: |
| |
| ```SQL |
| IoTDB> SELECT *, rank() OVER w as rank FROM device_flow WINDOW w AS (PARTITION BY device ORDER BY flow); |
| +-----------------------------+------+----+----+ |
| | time|device|flow|rank| |
| +-----------------------------+------+----+----+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 1| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 2| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 1| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 2| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 2| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 4| |
| +-----------------------------+------+----+----+ |
| ``` |
| |
| 2. dense\_rank |
| |
| * 函数名:`dense_rank()` |
| * 定义:返回当前行在整个 partition 中的序号,值相同的行序号相同,序号之间没有 gap。 |
| * 示例: |
| |
| ```SQL |
| IoTDB> SELECT *, dense_rank() OVER w as dense_rank FROM device_flow WINDOW w AS (PARTITION BY device ORDER BY flow); |
| +-----------------------------+------+----+----------+ |
| | time|device|flow|dense_rank| |
| +-----------------------------+------+----+----------+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 1| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 2| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 1| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 2| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 2| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 3| |
| +-----------------------------+------+----+----------+ |
| ``` |
| |
| 3. row\_number |
| |
| * 函数名:`row_number()` |
| * 定义:返回当前行在整个 partition 中的行号,注意行号从 1 开始; |
| * 示例: |
| |
| ```SQL |
| IoTDB> SELECT *, row_number() OVER w as row_number FROM device_flow WINDOW w AS (PARTITION BY device ORDER BY flow); |
| +-----------------------------+------+----+----------+ |
| | time|device|flow|row_number| |
| +-----------------------------+------+----+----------+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 1| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 2| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 1| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 2| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 3| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 4| |
| +-----------------------------+------+----+----------+ |
| ``` |
| |
| 4. percent\_rank |
| |
| * 函数名:`percent_rank()` |
| * 定义:以百分比的形式,返回当前行的值在整个 partition 中的序号;即 **(rank() - 1) / (n - 1)**,其中 n 是整个 partition 的行数; |
| * 示例: |
| |
| ```SQL |
| IoTDB> SELECT *, percent_rank() OVER w as percent_rank FROM device_flow WINDOW w AS (PARTITION BY device ORDER BY flow); |
| +-----------------------------+------+----+------------------+ |
| | time|device|flow| percent_rank| |
| +-----------------------------+------+----+------------------+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 0.0| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 1.0| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 0.0| |
| |1970-01-01T08:00:00.000+08:00| d0| 3|0.3333333333333333| |
| |1970-01-01T08:00:02.000+08:00| d0| 3|0.3333333333333333| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 1.0| |
| +-----------------------------+------+----+------------------+ |
| ``` |
| |
| 5. cume\_dist |
| |
| * 函数名:cume\_dist |
| * 定义:以百分比的形式,返回当前行的值在整个 partition 中的序号;即 **(小于等于它的行数) / n**。 |
| * 示例: |
| |
| ```SQL |
| IoTDB> SELECT *, cume_dist() OVER w as cume_dist FROM device_flow WINDOW w AS (PARTITION BY device ORDER BY flow); |
| +-----------------------------+------+----+---------+ |
| | time|device|flow|cume_dist| |
| +-----------------------------+------+----+---------+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 0.5| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 1.0| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 0.25| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 0.75| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 0.75| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 1.0| |
| +-----------------------------+------+----+---------+ |
| ``` |
| |
| 6. ntile |
| |
| * 函数名:ntile |
| * 定义:指定 n,给每一行进行 1~n 的编号。 |
| * 整个 partition 行数比 n 小,那么编号就是行号 index; |
| * 整个 partition 行数比 n 大: |
| * 如果行数能除尽 n,那么比较完美,比如行数为 4,n 为 2,那么编号为 1、1、2、2、; |
| * 如果行数不能除尽 n,那么就分给开头几组,比如行数为 5,n 为 3,那么编号为 1、1、2、2、3; |
| * 示例: |
| |
| ```SQL |
| IoTDB> SELECT *, ntile(2) OVER w as ntile FROM device_flow WINDOW w AS (PARTITION BY device ORDER BY flow); |
| +-----------------------------+------+----+-----+ |
| | time|device|flow|ntile| |
| +-----------------------------+------+----+-----+ |
| |1970-01-01T08:00:04.000+08:00| d1| 2| 1| |
| |1970-01-01T08:00:05.000+08:00| d1| 4| 2| |
| |1970-01-01T08:00:03.000+08:00| d0| 1| 1| |
| |1970-01-01T08:00:00.000+08:00| d0| 3| 1| |
| |1970-01-01T08:00:02.000+08:00| d0| 3| 2| |
| |1970-01-01T08:00:01.000+08:00| d0| 5| 2| |
| +-----------------------------+------+----+-----+ |
| ``` |
| |
| ## 4. 场景示例 |
| 1. 多设备 diff 函数 |
| |
| 对于每个设备的每一行,与前一行求差值: |
| |
| ```SQL |
| SELECT |
| *, |
| measurement - lag(measurement) OVER (PARTITION BY device ORDER BY time) |
| FROM data |
| WHERE timeCondition; |
| ``` |
| |
| 对于每个设备的每一行,与后一行求差值: |
| |
| ```SQL |
| SELECT |
| *, |
| measurement - lead(measurement) OVER (PARTITION BY device ORDER BY time) |
| FROM data |
| WHERE timeCondition; |
| ``` |
| |
| 对于单个设备的每一行,与前一行求差值(后一行同理): |
| |
| ```SQL |
| SELECT |
| *, |
| measurement - lag(measurement) OVER (ORDER BY time) |
| FROM data |
| where device='d1' |
| WHERE timeCondition; |
| ``` |
| |
| 2. 多设备 TOP\_K/BOTTOM\_K |
| |
| 利用 rank 获取序号,然后在外部的查询中保留想要的顺序。 |
| |
| (注意, window function 的执行顺序在 HAVING 子句之后,所以这里需要子查询) |
| |
| ```SQL |
| SELECT * |
| FROM( |
| SELECT |
| *, |
| rank() OVER (PARTITION BY device ORDER BY time DESC) |
| FROM data |
| WHERE timeCondition |
| ) |
| WHERE rank <= 3; |
| ``` |
| |
| 除了按照时间排序之外,还可以按照测点的值进行排序: |
| |
| ```SQL |
| SELECT * |
| FROM( |
| SELECT |
| *, |
| rank() OVER (PARTITION BY device ORDER BY measurement DESC) |
| FROM data |
| WHERE timeCondition |
| ) |
| WHERE rank <= 3; |
| ``` |
| |
| 3. 多设备 CHANGE\_POINTS |
| |
| 这个 sql 用来去除输入序列中连续相同值,可以用 lead + 子查询实现: |
| |
| ```SQL |
| SELECT |
| time, |
| device, |
| measurement |
| FROM( |
| SELECT |
| time, |
| device, |
| measurement, |
| LEAD(measurement) OVER (PARTITION BY device ORDER BY time) AS next |
| FROM data |
| WHERE timeCondition |
| ) |
| WHERE measurement != next OR next IS NULL; |
| ``` |