The deployment of monitoring tools can refer to the document Monitoring Panel Deployment section.
For metrics whose Metric Name is name and Tags are K1=V1, ..., Kn=Vn, the mapping is as follows, where value is a specific value
| Metric Type | Mapping | 
|---|---|
| Counter | name_total{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”} value | 
| AutoGaugećGauge | name{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”} value | 
| Histogram | name_max{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”} value  name_sum{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”} value name_count{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”} value name{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”, quantile=“0.5”} value name{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”, quantile=“0.99”} value  | 
| Rate | name_total{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”} value  name_total{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”, rate=“m1”} value name_total{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”, rate=“m5”} value name_total{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”, rate=“m15”} value name_total{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”, rate=“mean”} value  | 
| Timer | name_seconds_max{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”} value  name_seconds_sum{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”} value name_seconds_count{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”} value name_seconds{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”, quantile=“0.5”} value name_seconds{cluster=“clusterName”, nodeType=“nodeType”, nodeId=“nodeId”, k1=“V1”, ..., Kn=“Vn”, quantile=“0.99”} value  | 
dn_metric_reporter_list=PROMETHEUS dn_metric_level=CORE dn_metric_prometheus_reporter_port=9091
Then you can get metrics data as follows
curl to visit http://servier_ip:9091/metrics, you can get the following metric data:...
# HELP file_count
# TYPE file_count gauge
file_count{name="wal",} 0.0
file_count{name="unseq",} 0.0
file_count{name="seq",} 2.0
...
As shown above, IoTDB exposes monitoring metrics data in the standard Prometheus format to the outside world. Prometheus can be used to collect and store monitoring indicators, and Grafana can be used to visualize monitoring indicators.
The following picture describes the relationships among IoTDB, Prometheus and Grafana
So, we need to do some additional works to configure and deploy Prometheus and Grafana.
For instance, you can config your Prometheus as follows to get metrics data from IoTDB:
job_name: pull-metrics honor_labels: true honor_timestamps: true scrape_interval: 15s scrape_timeout: 10s metrics_path: /metrics scheme: http follow_redirects: true static_configs: - targets: - localhost:9091
The following documents may help you have a good journey with Prometheus and Grafana.
Grafana query metrics from Prometheus
We introduce the Apache IoTDB Dashboard, designed for unified centralized operations and management. With it, multiple clusters can be monitored through a single panel.
You can access the Dashboard's Json file in the enterprise edition.
Including but not limited to:
Including but not limited to:
Including but not limited to:
Including but not limited to:
Including but not limited to: