Supported versions of Spark and Scala are as follows:
| Spark Version | Scala Version |
|---|---|
2.4.0-latest | 2.11, 2.12 |
spark-iotdb-connector supports Scala 2.11 and 2.12, but not 2.13.spark-iotdb-connector supports usage in Spark for both Java, Scala, and PySpark.spark-iotdb-connector has two use cases: IDE development and spark-shell debugging.
For IDE development, simply add the following dependency to the pom.xml file:
<dependency> <groupId>org.apache.iotdb</groupId> <!-- spark-iotdb-connector_2.11 or spark-iotdb-connector_2.13 --> <artifactId>spark-iotdb-connector_2.12.10</artifactId> <version>${iotdb.version}</version> </dependency>
spark-shell DebuggingTo use spark-iotdb-connector in spark-shell, you need to download the with-dependencies version of the jar package from the official website. After that, copy the jar package to the ${SPARK_HOME}/jars directory. Simply execute the following command:
cp spark-iotdb-connector_2.12.10-${iotdb.version}.jar $SPARK_HOME/jars/
In addition, to ensure that spark can use JDBC and IoTDB connections, you need to do the following:
Run the following command to compile the IoTDB JDBC connector:
mvn clean package -pl iotdb-client/jdbc -am -DskipTests -P get-jar-with-dependencies
The compiled jar package is located in the following directory:
$IoTDB_HOME/iotdb-client/jdbc/target/iotdb-jdbc-{version}-SNAPSHOT-jar-with-dependencies.jar
At last, copy the jar package to the ${SPARK_HOME}/jars directory. Simply execute the following command:
cp iotdb-jdbc-{version}-SNAPSHOT-jar-with-dependencies.jar $SPARK_HOME/jars/
| Parameter | Description | Default Value | Scope | Can be Empty |
|---|---|---|---|---|
| url | Specifies the JDBC URL of IoTDB | null | read, write | false |
| user | The username of IoTDB | root | read, write | true |
| password | The password of IoTDB | root | read, write | true |
| sql | Specifies the SQL statement for querying | null | read | true |
| numPartition | Specifies the partition number of the DataFrame when in read, and the write concurrency number when in write | 1 | read, write | true |
| lowerBound | The start timestamp of the query (inclusive) | 0 | read | true |
| upperBound | The end timestamp of the query (inclusive) | 0 | read | true |
Here is an example that demonstrates how to read data from IoTDB into a DataFrame:
import org.apache.iotdb.spark.db._ val df = spark.read.format("org.apache.iotdb.spark.db") .option("user", "root") .option("password", "root") .option("url", "jdbc:iotdb://127.0.0.1:6667/") .option("sql", "select ** from root") // query SQL .option("lowerBound", "0") // lower timestamp bound .option("upperBound", "100000000") // upper timestamp bound .option("numPartition", "5") // number of partitions .load df.printSchema() df.show()
Here is an example that demonstrates how to write data to IoTDB:
// Construct narrow table data val df = spark.createDataFrame(List( (1L, "root.test.d0", 1, 1L, 1.0F, 1.0D, true, "hello"), (2L, "root.test.d0", 2, 2L, 2.0F, 2.0D, false, "world"))) val dfWithColumn = df.withColumnRenamed("_1", "Time") .withColumnRenamed("_2", "Device") .withColumnRenamed("_3", "s0") .withColumnRenamed("_4", "s1") .withColumnRenamed("_5", "s2") .withColumnRenamed("_6", "s3") .withColumnRenamed("_7", "s4") .withColumnRenamed("_8", "s5") // Write narrow table data dfWithColumn .write .format("org.apache.iotdb.spark.db") .option("url", "jdbc:iotdb://127.0.0.1:6667/") .save // Construct wide table data val df = spark.createDataFrame(List( (1L, 1, 1L, 1.0F, 1.0D, true, "hello"), (2L, 2, 2L, 2.0F, 2.0D, false, "world"))) val dfWithColumn = df.withColumnRenamed("_1", "Time") .withColumnRenamed("_2", "root.test.d0.s0") .withColumnRenamed("_3", "root.test.d0.s1") .withColumnRenamed("_4", "root.test.d0.s2") .withColumnRenamed("_5", "root.test.d0.s3") .withColumnRenamed("_6", "root.test.d0.s4") .withColumnRenamed("_7", "root.test.d0.s5") // Write wide table data dfWithColumn.write.format("org.apache.iotdb.spark.db") .option("url", "jdbc:iotdb://127.0.0.1:6667/") .option("numPartition", "10") .save
Here are examples of how to convert between wide and narrow tables:
import org.apache.iotdb.spark.db._ val wide_df = spark.read.format("org.apache.iotdb.spark.db").option("url", "jdbc:iotdb://127.0.0.1:6667/").option("sql", "select * from root.** where time < 1100 and time > 1000").load val narrow_df = Transformer.toNarrowForm(spark, wide_df)
import org.apache.iotdb.spark.db._ val wide_df = Transformer.toWideForm(spark, narrow_df)
Using the TsFile structure as an example: there are three measurements in the TsFile pattern, namely Status, Temperature, and Hardware. The basic information for each of these three measurements is as follows:
| Name | Type | Encoding |
|---|---|---|
| Status | Boolean | PLAIN |
| Temperature | Float | RLE |
| Hardware | Text | PLAIN |
The existing data in the TsFile is as follows:
d1:root.ln.wf01.wt01d2:root.ln.wf02.wt02| time | d1.status | time | d1.temperature | time | d2.hardware | time | d2.status |
|---|---|---|---|---|---|---|---|
| 1 | True | 1 | 2.2 | 2 | “aaa” | 1 | True |
| 3 | True | 2 | 2.2 | 4 | “bbb” | 2 | False |
| 5 | False | 3 | 2.1 | 6 | “ccc” | 4 | True |
The wide (default) table form is as follows:
| Time | root.ln.wf02.wt02.temperature | root.ln.wf02.wt02.status | root.ln.wf02.wt02.hardware | root.ln.wf01.wt01.temperature | root.ln.wf01.wt01.status | root.ln.wf01.wt01.hardware |
|---|---|---|---|---|---|---|
| 1 | null | true | null | 2.2 | true | null |
| 2 | null | false | aaa | 2.2 | null | null |
| 3 | null | null | null | 2.1 | true | null |
| 4 | null | true | bbb | null | null | null |
| 5 | null | null | null | null | false | null |
| 6 | null | null | ccc | null | null | null |
You can also use the narrow table format as shown below:
| Time | Device | status | hardware | temperature |
|---|---|---|---|---|
| 1 | root.ln.wf02.wt01 | true | null | 2.2 |
| 1 | root.ln.wf02.wt02 | true | null | null |
| 2 | root.ln.wf02.wt01 | null | null | 2.2 |
| 2 | root.ln.wf02.wt02 | false | aaa | null |
| 3 | root.ln.wf02.wt01 | true | null | 2.1 |
| 4 | root.ln.wf02.wt02 | true | bbb | null |
| 5 | root.ln.wf02.wt01 | false | null | null |
| 6 | root.ln.wf02.wt02 | null | ccc | null |