SELECT Clause specifies the columns included in the query results.
SELECT setQuantifier? selectItem (',' selectItem)* selectItem : expression (AS? identifier)? #selectSingle | tableName '.' ASTERISK (AS columnAliases)? #selectAll | ASTERISK #selectAll ; setQuantifier : DISTINCT | ALL ;
SUM, AVG, COUNT) and window functions, logically executed last in the query process.SELECT DISTINCT column_name ensures that the values in the query results are unique, removing duplicates.Each selectItem can take one of the following forms:
expression [[AS] column_alias] defines a single output column and optionally assigns an alias.relation.* selects all columns from a specified relation. Column aliases are not allowed in this case.* selects all columns returned by the query. Column aliases are not allowed.Usage scenarios for DISTINCT:
SELECT Statement: Use DISTINCT in the SELECT statement to remove duplicate items from the query results.
Aggregate Functions: When used with aggregate functions, DISTINCT only processes non-duplicate rows in the input dataset.
AGROUP BY Clause: Use ALL and DISTINCT quantifiers in the GROUP BY clause to determine whether each duplicate grouping set produces distinct output rows.
COLUMNS Function:
COLUMNS(*): Matches all columns and supports combining with expressions.COLUMNS(regexStr) ? AS identifier: Regular expression matching(regexStr) and supports combining with expressions.AS is omitted, the original column name is displayed in the format _coln_original_name (where n is the column’s position in the result table).'$index'.$.The Example Data pagepage provides SQL statements to construct table schemas and insert data. By downloading and executing these statements in the IoTDB CLI, you can import the data into IoTDB. This data can be used to test and run the example SQL queries included in this documentation, allowing you to reproduce the described results.
The asterisk (*) selects all columns in a table. Note that it cannot be used with most functions, except for cases like COUNT(*).
Example: Selecting all columns from a table.
SELECT * FROM table1;
Results:
+-----------------------------+------+--------+---------+--------+-----------+-----------+--------+------+-----------------------------+ | time|region|plant_id|device_id|model_id|maintenance|temperature|humidity|status| modifytime| +-----------------------------+------+--------+---------+--------+-----------+-----------+--------+------+-----------------------------+ |2024-11-29T11:00:00.000+08:00| 上海| 3002| 100| E| 180| null| 45.1| true| null| |2024-11-29T18:30:00.000+08:00| 上海| 3002| 100| E| 180| 90.0| 35.4| true|2024-11-29T18:30:15.000+08:00| |2024-11-28T08:00:00.000+08:00| 上海| 3001| 100| C| 90| 85.0| null| null|2024-11-28T08:00:09.000+08:00| |2024-11-28T09:00:00.000+08:00| 上海| 3001| 100| C| 90| null| 40.9| true| null| |2024-11-28T10:00:00.000+08:00| 上海| 3001| 100| C| 90| 85.0| 35.2| null|2024-11-28T10:00:11.000+08:00| |2024-11-28T11:00:00.000+08:00| 上海| 3001| 100| C| 90| 88.0| 45.1| true|2024-11-28T11:00:12.000+08:00| |2024-11-26T13:37:00.000+08:00| 北京| 1001| 100| A| 180| 90.0| 35.1| true|2024-11-26T13:37:34.000+08:00| |2024-11-26T13:38:00.000+08:00| 北京| 1001| 100| A| 180| 90.0| 35.1| true|2024-11-26T13:38:25.000+08:00| |2024-11-30T09:30:00.000+08:00| 上海| 3002| 101| F| 360| 90.0| 35.2| true| null| |2024-11-30T14:30:00.000+08:00| 上海| 3002| 101| F| 360| 90.0| 34.8| true|2024-11-30T14:30:17.000+08:00| |2024-11-29T10:00:00.000+08:00| 上海| 3001| 101| D| 360| 85.0| null| null|2024-11-29T10:00:13.000+08:00| |2024-11-27T16:38:00.000+08:00| 北京| 1001| 101| B| 180| null| 35.1| true|2024-11-26T16:37:01.000+08:00| |2024-11-27T16:39:00.000+08:00| 北京| 1001| 101| B| 180| 85.0| 35.3| null| null| |2024-11-27T16:40:00.000+08:00| 北京| 1001| 101| B| 180| 85.0| null| null|2024-11-26T16:37:03.000+08:00| |2024-11-27T16:41:00.000+08:00| 北京| 1001| 101| B| 180| 85.0| null| null|2024-11-26T16:37:04.000+08:00| |2024-11-27T16:42:00.000+08:00| 北京| 1001| 101| B| 180| null| 35.2| false| null| |2024-11-27T16:43:00.000+08:00| 北京| 1001| 101| B| 180| null| null| false| null| |2024-11-27T16:44:00.000+08:00| 北京| 1001| 101| B| 180| null| null| false|2024-11-26T16:37:08.000+08:00| +-----------------------------+------+--------+---------+--------+-----------+-----------+--------+------+-----------------------------+ Total line number = 18 It costs 0.653s
Aggregate functions summarize multiple rows into a single value. When aggregate functions are present in the SELECT clause, the query is treated as an aggregate query. All expressions in the query must either be part of an aggregate function or specified in the GROUP BY clause.
Example 1: Total number of rows in a table.
SELECT count(*) FROM table1;
Results:
+-----+ |_col0| +-----+ | 18| +-----+ Total line number = 1 It costs 0.091s
Example 2: Total rows grouped by region.
SELECT region, count(*) FROM table1 GROUP BY region;
Results:
+------+-----+ |region|_col1| +------+-----+ | 上海| 9| | 北京| 9| +------+-----+ Total line number = 2 It costs 0.071s
The AS keyword assigns an alias to selected columns, improving readability by overriding existing column names.
Example 1: Original table.
IoTDB> SELECT * FROM table1;
Results:
+-----------------------------+------+--------+---------+--------+-----------+-----------+--------+------+-----------------------------+ | time|region|plant_id|device_id|model_id|maintenance|temperature|humidity|status| modifytime| +-----------------------------+------+--------+---------+--------+-----------+-----------+--------+------+-----------------------------+ |2024-11-29T11:00:00.000+08:00| 上海| 3002| 100| E| 180| null| 45.1| true| null| |2024-11-29T18:30:00.000+08:00| 上海| 3002| 100| E| 180| 90.0| 35.4| true|2024-11-29T18:30:15.000+08:00| |2024-11-28T08:00:00.000+08:00| 上海| 3001| 100| C| 90| 85.0| null| null|2024-11-28T08:00:09.000+08:00| |2024-11-28T09:00:00.000+08:00| 上海| 3001| 100| C| 90| null| 40.9| true| null| |2024-11-28T10:00:00.000+08:00| 上海| 3001| 100| C| 90| 85.0| 35.2| null|2024-11-28T10:00:11.000+08:00| |2024-11-28T11:00:00.000+08:00| 上海| 3001| 100| C| 90| 88.0| 45.1| true|2024-11-28T11:00:12.000+08:00| |2024-11-26T13:37:00.000+08:00| 北京| 1001| 100| A| 180| 90.0| 35.1| true|2024-11-26T13:37:34.000+08:00| |2024-11-26T13:38:00.000+08:00| 北京| 1001| 100| A| 180| 90.0| 35.1| true|2024-11-26T13:38:25.000+08:00| |2024-11-30T09:30:00.000+08:00| 上海| 3002| 101| F| 360| 90.0| 35.2| true| null| |2024-11-30T14:30:00.000+08:00| 上海| 3002| 101| F| 360| 90.0| 34.8| true|2024-11-30T14:30:17.000+08:00| |2024-11-29T10:00:00.000+08:00| 上海| 3001| 101| D| 360| 85.0| null| null|2024-11-29T10:00:13.000+08:00| |2024-11-27T16:38:00.000+08:00| 北京| 1001| 101| B| 180| null| 35.1| true|2024-11-26T16:37:01.000+08:00| |2024-11-27T16:39:00.000+08:00| 北京| 1001| 101| B| 180| 85.0| 35.3| null| null| |2024-11-27T16:40:00.000+08:00| 北京| 1001| 101| B| 180| 85.0| null| null|2024-11-26T16:37:03.000+08:00| |2024-11-27T16:41:00.000+08:00| 北京| 1001| 101| B| 180| 85.0| null| null|2024-11-26T16:37:04.000+08:00| |2024-11-27T16:42:00.000+08:00| 北京| 1001| 101| B| 180| null| 35.2| false| null| |2024-11-27T16:43:00.000+08:00| 北京| 1001| 101| B| 180| null| null| false| null| |2024-11-27T16:44:00.000+08:00| 北京| 1001| 101| B| 180| null| null| false|2024-11-26T16:37:08.000+08:00| +-----------------------------+------+--------+---------+--------+-----------+-----------+--------+------+-----------------------------+ Total line number = 18 It costs 0.653s
Example 2: Assigning an alias to a single column.
IoTDB> SELECT device_id AS device FROM table1;
Results:
+------+ |device| +------+ | 100| | 100| | 100| | 100| | 100| | 100| | 100| | 100| | 101| | 101| | 101| | 101| | 101| | 101| | 101| | 101| | 101| | 101| +------+ Total line number = 18 It costs 0.053s
Example 3: Assigning aliases to all columns.
IoTDB> SELECT table1.* AS (timestamp, Reg, Pl, DevID, Mod, Mnt, Temp, Hum, Stat,MTime) FROM table1;
Results:
+-----------------------------+----+----+-----+---+---+----+----+-----+-----------------------------+ | TIMESTAMP| REG| PL|DEVID|MOD|MNT|TEMP| HUM| STAT| MTIME| +-----------------------------+----+----+-----+---+---+----+----+-----+-----------------------------+ |2024-11-29T11:00:00.000+08:00|上海|3002| 100| E|180|null|45.1| true| null| |2024-11-29T18:30:00.000+08:00|上海|3002| 100| E|180|90.0|35.4| true|2024-11-29T18:30:15.000+08:00| |2024-11-28T08:00:00.000+08:00|上海|3001| 100| C| 90|85.0|null| null|2024-11-28T08:00:09.000+08:00| |2024-11-28T09:00:00.000+08:00|上海|3001| 100| C| 90|null|40.9| true| null| |2024-11-28T10:00:00.000+08:00|上海|3001| 100| C| 90|85.0|35.2| null|2024-11-28T10:00:11.000+08:00| |2024-11-28T11:00:00.000+08:00|上海|3001| 100| C| 90|88.0|45.1| true|2024-11-28T11:00:12.000+08:00| |2024-11-26T13:37:00.000+08:00|北京|1001| 100| A|180|90.0|35.1| true|2024-11-26T13:37:34.000+08:00| |2024-11-26T13:38:00.000+08:00|北京|1001| 100| A|180|90.0|35.1| true|2024-11-26T13:38:25.000+08:00| |2024-11-30T09:30:00.000+08:00|上海|3002| 101| F|360|90.0|35.2| true| null| |2024-11-30T14:30:00.000+08:00|上海|3002| 101| F|360|90.0|34.8| true|2024-11-30T14:30:17.000+08:00| |2024-11-29T10:00:00.000+08:00|上海|3001| 101| D|360|85.0|null| null|2024-11-29T10:00:13.000+08:00| |2024-11-27T16:38:00.000+08:00|北京|1001| 101| B|180|null|35.1| true|2024-11-26T16:37:01.000+08:00| |2024-11-27T16:39:00.000+08:00|北京|1001| 101| B|180|85.0|35.3| null| null| |2024-11-27T16:40:00.000+08:00|北京|1001| 101| B|180|85.0|null| null|2024-11-26T16:37:03.000+08:00| |2024-11-27T16:41:00.000+08:00|北京|1001| 101| B|180|85.0|null| null|2024-11-26T16:37:04.000+08:00| |2024-11-27T16:42:00.000+08:00|北京|1001| 101| B|180|null|35.2|false| null| |2024-11-27T16:43:00.000+08:00|北京|1001| 101| B|180|null|null|false| null| |2024-11-27T16:44:00.000+08:00|北京|1001| 101| B|180|null|null|false|2024-11-26T16:37:08.000+08:00| +-----------------------------+----+----+-----+---+---+----+----+-----+-----------------------------+ Total line number = 18 It costs 0.189s
-- Query data from columns whose names start with 'm' IoTDB:database1> select columns('^m.*') from table1 limit 5 +--------+-----------+ |model_id|maintenance| +--------+-----------+ | E| 180| | E| 180| | C| 90| | C| 90| | C| 90| +--------+-----------+ -- Query columns whose names start with 'o' - throw an exception if no columns match IoTDB:database1> select columns('^o.*') from table1 limit 5 Msg: org.apache.iotdb.jdbc.IoTDBSQLException: 701: No matching columns found that match regex '^o.*' -- Query data from columns whose names start with 'm' and rename them with 'series_' prefix IoTDB:database1> select columns('^m(.*)') AS "series_$0" from table1 limit 5 +---------------+------------------+ |series_model_id|series_maintenance| +---------------+------------------+ | E| 180| | E| 180| | C| 90| | C| 90| | C| 90| +---------------+------------------+
-- Query the minimum value of all columns IoTDB:database1> select min(columns(*)) from table1 +-----------------------------+------------+--------------+---------------+--------------+-----------------+-----------------+--------------+------------+-----------------------------+ | _col0_time|_col1_region|_col2_plant_id|_col3_device_id|_col4_model_id|_col5_maintenance|_col6_temperature|_col7_humidity|_col8_status| _col9_arrival_time| +-----------------------------+------------+--------------+---------------+--------------+-----------------+-----------------+--------------+------------+-----------------------------+ |2024-11-26T13:37:00.000+08:00| 上海| 1001| 100| A| 180| 85.0| 34.8| false|2024-11-26T13:37:34.000+08:00| +-----------------------------+------------+--------------+---------------+--------------+-----------------+-----------------+--------------+------------+-----------------------------+
Usage Restriction: When multiple COLUMNS functions appear in the same expression, their parameters must be identical.
-- Query the sum of minimum and maximum values for columns starting with 'h' IoTDB:database1> select min(columns('^h.*')) + max(columns('^h.*')) from table1 +--------------+ |_col0_humidity| +--------------+ | 79.899994| +--------------+ -- Error Case: Non-Identical COLUMNS Functions IoTDB:database1> select min(columns('^h.*')) + max(columns('^t.*')) from table1 Msg: org.apache.iotdb.jdbc.IoTDBSQLException: 701: Multiple different COLUMNS in the same expression are not supported
-- Query minimum of 'h'-columns and maximum of 'h'-columns separately IoTDB:database1> select min(columns('^h.*')) , max(columns('^h.*')) from table1 +--------------+--------------+ |_col0_humidity|_col1_humidity| +--------------+--------------+ | 34.8| 45.1| +--------------+--------------+ -- Query minimum of 'h'-columns and maximum of 'te'-columns IoTDB:database1> select min(columns('^h.*')) , max(columns('^te.*')) from table1 +--------------+-----------------+ |_col0_humidity|_col1_temperature| +--------------+-----------------+ | 34.8| 90.0| +--------------+-----------------+
-- Query data where all 'h'-columns must be > 40 (equivalent to) IoTDB:database1> select * from table1 where columns('^h.*') > 40 +-----------------------------+------+--------+---------+--------+-----------+-----------+--------+------+-----------------------------+ | time|region|plant_id|device_id|model_id|maintenance|temperature|humidity|status| arrival_time| +-----------------------------+------+--------+---------+--------+-----------+-----------+--------+------+-----------------------------+ |2024-11-29T11:00:00.000+08:00| 上海| 3002| 100| E| 180| null| 45.1| true| null| |2024-11-28T09:00:00.000+08:00| 上海| 3001| 100| C| 90| null| 40.9| true| null| |2024-11-28T11:00:00.000+08:00| 上海| 3001| 100| C| 90| 88.0| 45.1| true|2024-11-28T11:00:12.000+08:00| +-----------------------------+------+--------+---------+--------+-----------+-----------+--------+------+-----------------------------+ --Alternative syntax IoTDB:database1> select * from table1 where humidity > 40 +-----------------------------+------+--------+---------+--------+-----------+-----------+--------+------+-----------------------------+ | time|region|plant_id|device_id|model_id|maintenance|temperature|humidity|status| arrival_time| +-----------------------------+------+--------+---------+--------+-----------+-----------+--------+------+-----------------------------+ |2024-11-29T11:00:00.000+08:00| 上海| 3002| 100| E| 180| null| 45.1| true| null| |2024-11-28T09:00:00.000+08:00| 上海| 3001| 100| C| 90| null| 40.9| true| null| |2024-11-28T11:00:00.000+08:00| 上海| 3001| 100| C| 90| 88.0| 45.1| true|2024-11-28T11:00:12.000+08:00| +-----------------------------+------+--------+---------+--------+-----------+-----------+--------+------+-----------------------------+
SELECT clause.