blob: 78379f3c7e159cd1915ac5569c86a316a26c36ad [file] [log] [blame]
/*
* Copyright (C) 2016-2017 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "JSCell.h"
#include "MarkedAllocator.h"
#include "MarkedBlock.h"
#include "MarkedSpace.h"
#include "Operations.h"
#include "SuperSampler.h"
#include "VM.h"
namespace JSC {
inline unsigned MarkedBlock::Handle::cellsPerBlock()
{
return MarkedSpace::blockPayload / cellSize();
}
inline bool MarkedBlock::Handle::isNewlyAllocatedStale() const
{
return m_newlyAllocatedVersion != space()->newlyAllocatedVersion();
}
inline bool MarkedBlock::Handle::hasAnyNewlyAllocated()
{
return !isNewlyAllocatedStale();
}
inline Heap* MarkedBlock::heap() const
{
return &vm()->heap;
}
inline MarkedSpace* MarkedBlock::space() const
{
return &heap()->objectSpace();
}
inline MarkedSpace* MarkedBlock::Handle::space() const
{
return &heap()->objectSpace();
}
inline bool MarkedBlock::marksConveyLivenessDuringMarking(HeapVersion markingVersion)
{
// This returns true if any of these is true:
// - We just created the block and so the bits are clear already.
// - This block has objects marked during the last GC, and so its version was up-to-date just
// before the current collection did beginMarking(). This means that any objects that have
// their mark bit set are valid objects that were never deleted, and so are candidates for
// marking in any conservative scan. Using our jargon, they are "live".
// - We did ~2^32 collections and rotated the version back to null, so we needed to hard-reset
// everything. If the marks had been stale, we would have cleared them. So, we can be sure that
// any set mark bit reflects objects marked during last GC, i.e. "live" objects.
// It would be absurd to use this method when not collecting, since this special "one version
// back" state only makes sense when we're in a concurrent collection and have to be
// conservative.
ASSERT(space()->isMarking());
if (heap()->collectionScope() != CollectionScope::Full)
return false;
return m_markingVersion == MarkedSpace::nullVersion
|| MarkedSpace::nextVersion(m_markingVersion) == markingVersion;
}
inline bool MarkedBlock::Handle::isLive(HeapVersion markingVersion, bool isMarking, const HeapCell* cell)
{
ASSERT(!isFreeListed());
if (UNLIKELY(hasAnyNewlyAllocated())) {
if (isNewlyAllocated(cell))
return true;
}
if (allocator()->isAllocated(NoLockingNecessary, this))
return true;
MarkedBlock& block = this->block();
if (block.areMarksStale()) {
if (!isMarking)
return false;
if (!block.marksConveyLivenessDuringMarking(markingVersion))
return false;
}
return block.m_marks.get(block.atomNumber(cell));
}
inline bool MarkedBlock::Handle::isLiveCell(HeapVersion markingVersion, bool isMarking, const void* p)
{
if (!m_block->isAtom(p))
return false;
return isLive(markingVersion, isMarking, static_cast<const HeapCell*>(p));
}
// The following has to be true for specialization to kick in:
//
// sweepMode == SweepToFreeList
// scribbleMode == DontScribble
// newlyAllocatedMode == DoesNotHaveNewlyAllocated
// destructionMode != BlockHasDestrictorsAndCollectorIsRunning
//
// emptyMode = IsEmpty
// destructionMode = DoesNotNeedDestruction
// marksMode = MarksNotStale (1)
// marksMode = MarksStale (2)
// emptyMode = NotEmpty
// destructionMode = DoesNotNeedDestruction
// marksMode = MarksNotStale (3)
// marksMode = MarksStale (4)
// destructionMode = NeedsDestruction
// marksMode = MarksNotStale (5)
// marksMode = MarksStale (6)
//
// Only the DoesNotNeedDestruction one should be specialized by MarkedBlock.
template<bool specialize, MarkedBlock::Handle::EmptyMode specializedEmptyMode, MarkedBlock::Handle::SweepMode specializedSweepMode, MarkedBlock::Handle::SweepDestructionMode specializedDestructionMode, MarkedBlock::Handle::ScribbleMode specializedScribbleMode, MarkedBlock::Handle::NewlyAllocatedMode specializedNewlyAllocatedMode, MarkedBlock::Handle::MarksMode specializedMarksMode, typename DestroyFunc>
FreeList MarkedBlock::Handle::specializedSweep(MarkedBlock::Handle::EmptyMode emptyMode, MarkedBlock::Handle::SweepMode sweepMode, MarkedBlock::Handle::SweepDestructionMode destructionMode, MarkedBlock::Handle::ScribbleMode scribbleMode, MarkedBlock::Handle::NewlyAllocatedMode newlyAllocatedMode, MarkedBlock::Handle::MarksMode marksMode, const DestroyFunc& destroyFunc)
{
if (specialize) {
emptyMode = specializedEmptyMode;
sweepMode = specializedSweepMode;
destructionMode = specializedDestructionMode;
scribbleMode = specializedScribbleMode;
newlyAllocatedMode = specializedNewlyAllocatedMode;
marksMode = specializedMarksMode;
}
RELEASE_ASSERT(!(destructionMode == BlockHasNoDestructors && sweepMode == SweepOnly));
SuperSamplerScope superSamplerScope(false);
MarkedBlock& block = this->block();
if (false)
dataLog(RawPointer(this), "/", RawPointer(&block), ": MarkedBlock::Handle::specializedSweep!\n");
if (Options::useBumpAllocator()
&& emptyMode == IsEmpty
&& newlyAllocatedMode == DoesNotHaveNewlyAllocated) {
// This is an incredibly powerful assertion that checks the sanity of our block bits.
if (marksMode == MarksNotStale && !block.m_marks.isEmpty()) {
WTF::dataFile().atomically(
[&] (PrintStream& out) {
out.print("Block ", RawPointer(&block), ": marks not empty!\n");
out.print("Block lock is held: ", block.m_lock.isHeld(), "\n");
out.print("Marking version of block: ", block.m_markingVersion, "\n");
out.print("Marking version of heap: ", space()->markingVersion(), "\n");
UNREACHABLE_FOR_PLATFORM();
});
}
char* startOfLastCell = static_cast<char*>(cellAlign(block.atoms() + m_endAtom - 1));
char* payloadEnd = startOfLastCell + cellSize();
RELEASE_ASSERT(payloadEnd - MarkedBlock::blockSize <= bitwise_cast<char*>(&block));
char* payloadBegin = bitwise_cast<char*>(block.atoms() + firstAtom());
if (scribbleMode == Scribble)
scribble(payloadBegin, payloadEnd - payloadBegin);
if (sweepMode == SweepToFreeList)
setIsFreeListed();
else
m_allocator->setIsEmpty(NoLockingNecessary, this, true);
if (space()->isMarking())
block.m_lock.unlock();
FreeList result = FreeList::bump(payloadEnd, payloadEnd - payloadBegin);
if (false)
dataLog("Quickly swept block ", RawPointer(this), " with cell size ", cellSize(), " and attributes ", m_attributes, ": ", result, "\n");
return result;
}
// This produces a free list that is ordered in reverse through the block.
// This is fine, since the allocation code makes no assumptions about the
// order of the free list.
FreeCell* head = 0;
size_t count = 0;
bool isEmpty = true;
Vector<size_t> deadCells;
VM& vm = *this->vm();
auto handleDeadCell = [&] (size_t i) {
HeapCell* cell = reinterpret_cast_ptr<HeapCell*>(&block.atoms()[i]);
if (destructionMode != BlockHasNoDestructors && emptyMode == NotEmpty) {
JSCell* jsCell = static_cast<JSCell*>(cell);
if (!jsCell->isZapped()) {
destroyFunc(vm, jsCell);
jsCell->zap();
}
}
if (sweepMode == SweepToFreeList) {
FreeCell* freeCell = reinterpret_cast_ptr<FreeCell*>(cell);
if (scribbleMode == Scribble)
scribble(freeCell, cellSize());
freeCell->next = head;
head = freeCell;
++count;
}
};
for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) {
if (emptyMode == NotEmpty
&& ((marksMode == MarksNotStale && block.m_marks.get(i))
|| (newlyAllocatedMode == HasNewlyAllocated && m_newlyAllocated.get(i)))) {
isEmpty = false;
continue;
}
if (destructionMode == BlockHasDestructorsAndCollectorIsRunning)
deadCells.append(i);
else
handleDeadCell(i);
}
// We only want to discard the newlyAllocated bits if we're creating a FreeList,
// otherwise we would lose information on what's currently alive.
if (sweepMode == SweepToFreeList && newlyAllocatedMode == HasNewlyAllocated)
m_newlyAllocatedVersion = MarkedSpace::nullVersion;
if (space()->isMarking())
block.m_lock.unlock();
if (destructionMode == BlockHasDestructorsAndCollectorIsRunning) {
for (size_t i : deadCells)
handleDeadCell(i);
}
FreeList result = FreeList::list(head, count * cellSize());
if (sweepMode == SweepToFreeList)
setIsFreeListed();
else if (isEmpty)
m_allocator->setIsEmpty(NoLockingNecessary, this, true);
if (false)
dataLog("Slowly swept block ", RawPointer(&block), " with cell size ", cellSize(), " and attributes ", m_attributes, ": ", result, "\n");
return result;
}
template<typename DestroyFunc>
FreeList MarkedBlock::Handle::finishSweepKnowingSubspace(SweepMode sweepMode, const DestroyFunc& destroyFunc)
{
SweepDestructionMode destructionMode = this->sweepDestructionMode();
EmptyMode emptyMode = this->emptyMode();
ScribbleMode scribbleMode = this->scribbleMode();
NewlyAllocatedMode newlyAllocatedMode = this->newlyAllocatedMode();
MarksMode marksMode = this->marksMode();
FreeList result;
auto trySpecialized = [&] () -> bool {
if (sweepMode != SweepToFreeList)
return false;
if (scribbleMode != DontScribble)
return false;
if (newlyAllocatedMode != DoesNotHaveNewlyAllocated)
return false;
if (destructionMode != BlockHasDestructors)
return false;
if (emptyMode == IsEmpty)
return false;
switch (marksMode) {
case MarksNotStale:
result = specializedSweep<true, NotEmpty, SweepToFreeList, BlockHasDestructors, DontScribble, DoesNotHaveNewlyAllocated, MarksNotStale>(IsEmpty, SweepToFreeList, BlockHasDestructors, DontScribble, DoesNotHaveNewlyAllocated, MarksNotStale, destroyFunc);
return true;
case MarksStale:
result = specializedSweep<true, NotEmpty, SweepToFreeList, BlockHasDestructors, DontScribble, DoesNotHaveNewlyAllocated, MarksStale>(IsEmpty, SweepToFreeList, BlockHasDestructors, DontScribble, DoesNotHaveNewlyAllocated, MarksStale, destroyFunc);
return true;
}
return false;
};
if (trySpecialized())
return result;
// The template arguments don't matter because the first one is false.
return specializedSweep<false, IsEmpty, SweepOnly, BlockHasNoDestructors, DontScribble, HasNewlyAllocated, MarksStale>(emptyMode, sweepMode, destructionMode, scribbleMode, newlyAllocatedMode, marksMode, destroyFunc);
}
inline MarkedBlock::Handle::SweepDestructionMode MarkedBlock::Handle::sweepDestructionMode()
{
if (m_attributes.destruction == NeedsDestruction) {
if (space()->isMarking())
return BlockHasDestructorsAndCollectorIsRunning;
return BlockHasDestructors;
}
return BlockHasNoDestructors;
}
inline MarkedBlock::Handle::EmptyMode MarkedBlock::Handle::emptyMode()
{
// It's not obvious, but this is the only way to know if the block is empty. It's the only
// bit that captures these caveats:
// - It's true when the block is freshly allocated.
// - It's true if the block had been swept in the past, all destructors were called, and that
// sweep proved that the block is empty.
// - It's false if there are any destructors that need to be called, even if the block has no
// live objects.
return m_allocator->isEmpty(NoLockingNecessary, this) ? IsEmpty : NotEmpty;
}
inline MarkedBlock::Handle::ScribbleMode MarkedBlock::Handle::scribbleMode()
{
return scribbleFreeCells() ? Scribble : DontScribble;
}
inline MarkedBlock::Handle::NewlyAllocatedMode MarkedBlock::Handle::newlyAllocatedMode()
{
return hasAnyNewlyAllocated() ? HasNewlyAllocated : DoesNotHaveNewlyAllocated;
}
inline MarkedBlock::Handle::MarksMode MarkedBlock::Handle::marksMode()
{
HeapVersion markingVersion = space()->markingVersion();
bool marksAreUseful = !block().areMarksStale(markingVersion);
if (space()->isMarking())
marksAreUseful |= block().marksConveyLivenessDuringMarking(markingVersion);
return marksAreUseful ? MarksNotStale : MarksStale;
}
template <typename Functor>
inline IterationStatus MarkedBlock::Handle::forEachLiveCell(const Functor& functor)
{
HeapCell::Kind kind = m_attributes.cellKind;
for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) {
HeapCell* cell = reinterpret_cast_ptr<HeapCell*>(&m_block->atoms()[i]);
if (!isLive(cell))
continue;
if (functor(cell, kind) == IterationStatus::Done)
return IterationStatus::Done;
}
return IterationStatus::Continue;
}
template <typename Functor>
inline IterationStatus MarkedBlock::Handle::forEachDeadCell(const Functor& functor)
{
HeapCell::Kind kind = m_attributes.cellKind;
for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) {
HeapCell* cell = reinterpret_cast_ptr<HeapCell*>(&m_block->atoms()[i]);
if (isLive(cell))
continue;
if (functor(cell, kind) == IterationStatus::Done)
return IterationStatus::Done;
}
return IterationStatus::Continue;
}
template <typename Functor>
inline IterationStatus MarkedBlock::Handle::forEachMarkedCell(const Functor& functor)
{
HeapCell::Kind kind = m_attributes.cellKind;
MarkedBlock& block = this->block();
bool areMarksStale = block.areMarksStale();
WTF::loadLoadFence();
if (areMarksStale)
return IterationStatus::Continue;
for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) {
HeapCell* cell = reinterpret_cast_ptr<HeapCell*>(&m_block->atoms()[i]);
if (!block.isMarkedRaw(cell))
continue;
if (functor(cell, kind) == IterationStatus::Done)
return IterationStatus::Done;
}
return IterationStatus::Continue;
}
} // namespace JSC