blob: c492a40a92de3159261d0bc8b3bb23015e674ea7 [file] [log] [blame]
/*
* Copyright (C) 2013 Cisco Systems, Inc. All rights reserved.
* Copyright (C) 2009-2011 STMicroelectronics. All rights reserved.
* Copyright (C) 2008, 2014, 2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(ASSEMBLER) && CPU(SH4)
#include "SH4Assembler.h"
#include "AbstractMacroAssembler.h"
#include <wtf/Assertions.h>
namespace JSC {
class MacroAssemblerSH4 : public AbstractMacroAssembler<SH4Assembler, MacroAssemblerSH4> {
public:
typedef SH4Assembler::FPRegisterID FPRegisterID;
static const Scale ScalePtr = TimesFour;
static const FPRegisterID fscratch = SH4Registers::dr10;
static const RegisterID stackPointerRegister = SH4Registers::sp;
static const RegisterID framePointerRegister = SH4Registers::fp;
static const RegisterID linkRegister = SH4Registers::pr;
static const RegisterID scratchReg3 = SH4Registers::r13;
static const int MaximumCompactPtrAlignedAddressOffset = 60;
static bool isCompactPtrAlignedAddressOffset(ptrdiff_t value)
{
return (value >= 0) && (value <= MaximumCompactPtrAlignedAddressOffset) && (!(value & 3));
}
enum RelationalCondition {
Equal = SH4Assembler::EQ,
NotEqual = SH4Assembler::NE,
Above = SH4Assembler::HI,
AboveOrEqual = SH4Assembler::HS,
Below = SH4Assembler::LI,
BelowOrEqual = SH4Assembler::LS,
GreaterThan = SH4Assembler::GT,
GreaterThanOrEqual = SH4Assembler::GE,
LessThan = SH4Assembler::LT,
LessThanOrEqual = SH4Assembler::LE
};
enum ResultCondition {
Overflow = SH4Assembler::OF,
Signed = SH4Assembler::SI,
PositiveOrZero = SH4Assembler::NS,
Zero = SH4Assembler::EQ,
NonZero = SH4Assembler::NE
};
enum DoubleCondition {
// These conditions will only evaluate to true if the comparison is ordered - i.e. neither operand is NaN.
DoubleEqual = SH4Assembler::EQ,
DoubleNotEqual = SH4Assembler::NE,
DoubleGreaterThan = SH4Assembler::GT,
DoubleGreaterThanOrEqual = SH4Assembler::GE,
DoubleLessThan = SH4Assembler::LT,
DoubleLessThanOrEqual = SH4Assembler::LE,
// If either operand is NaN, these conditions always evaluate to true.
DoubleEqualOrUnordered = SH4Assembler::EQU,
DoubleNotEqualOrUnordered = SH4Assembler::NEU,
DoubleGreaterThanOrUnordered = SH4Assembler::GTU,
DoubleGreaterThanOrEqualOrUnordered = SH4Assembler::GEU,
DoubleLessThanOrUnordered = SH4Assembler::LTU,
DoubleLessThanOrEqualOrUnordered = SH4Assembler::LEU,
};
RegisterID claimScratch()
{
return m_assembler.claimScratch();
}
void releaseScratch(RegisterID reg)
{
m_assembler.releaseScratch(reg);
}
static RelationalCondition invert(RelationalCondition cond)
{
switch (cond) {
case Equal:
return NotEqual;
case NotEqual:
return Equal;
case Above:
return BelowOrEqual;
case AboveOrEqual:
return Below;
case Below:
return AboveOrEqual;
case BelowOrEqual:
return Above;
case GreaterThan:
return LessThanOrEqual;
case GreaterThanOrEqual:
return LessThan;
case LessThan:
return GreaterThanOrEqual;
case LessThanOrEqual:
return GreaterThan;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
// Integer arithmetic operations
void add32(RegisterID src, RegisterID dest)
{
m_assembler.addlRegReg(src, dest);
}
void add32(RegisterID src1, RegisterID src2, RegisterID dest)
{
if (src1 == dest)
add32(src2, dest);
else {
move(src2, dest);
add32(src1, dest);
}
}
void add32(TrustedImm32 imm, RegisterID dest)
{
if (!imm.m_value)
return;
if (m_assembler.isImmediate(imm.m_value)) {
m_assembler.addlImm8r(imm.m_value, dest);
return;
}
RegisterID scr = claimScratch();
m_assembler.loadConstant(imm.m_value, scr);
m_assembler.addlRegReg(scr, dest);
releaseScratch(scr);
}
void add32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
move(src, dest);
add32(imm, dest);
}
void add32(TrustedImm32 imm, Address address)
{
if (!imm.m_value)
return;
RegisterID scr = claimScratch();
load32(address, scr);
add32(imm, scr);
store32(scr, address);
releaseScratch(scr);
}
void add32(Address src, RegisterID dest)
{
RegisterID scr = claimScratch();
load32(src, scr);
m_assembler.addlRegReg(scr, dest);
releaseScratch(scr);
}
void add32(AbsoluteAddress src, RegisterID dest)
{
RegisterID scr = claimScratch();
load32(src.m_ptr, scr);
m_assembler.addlRegReg(scr, dest);
releaseScratch(scr);
}
void and32(RegisterID src, RegisterID dest)
{
m_assembler.andlRegReg(src, dest);
}
void and32(RegisterID src1, RegisterID src2, RegisterID dest)
{
if (src1 == dest)
and32(src2, dest);
else {
move(src2, dest);
and32(src1, dest);
}
}
void and32(Address src, RegisterID dest)
{
RegisterID scr = claimScratch();
load32(src, scr);
and32(scr, dest);
releaseScratch(scr);
}
void and32(TrustedImm32 imm, RegisterID dest)
{
if (!imm.m_value) {
m_assembler.movImm8(0, dest);
return;
}
if ((imm.m_value <= 255) && (imm.m_value >= 0) && (dest == SH4Registers::r0)) {
m_assembler.andlImm8r(imm.m_value, dest);
return;
}
RegisterID scr = claimScratch();
m_assembler.loadConstant(imm.m_value, scr);
m_assembler.andlRegReg(scr, dest);
releaseScratch(scr);
}
void and32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
if (src != dest) {
move(imm, dest);
and32(src, dest);
return;
}
and32(imm, dest);
}
void lshift32(RegisterID shiftamount, RegisterID dest)
{
RegisterID shiftTmp = claimScratch();
m_assembler.loadConstant(0x1f, shiftTmp);
m_assembler.andlRegReg(shiftamount, shiftTmp);
m_assembler.shldRegReg(dest, shiftTmp);
releaseScratch(shiftTmp);
}
void lshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest)
{
move(src, dest);
lshift32(shiftAmount, dest);
}
void lshift32(TrustedImm32 imm, RegisterID dest)
{
int immMasked = imm.m_value & 0x1f;
if (!immMasked)
return;
if ((immMasked == 1) || (immMasked == 2) || (immMasked == 8) || (immMasked == 16)) {
m_assembler.shllImm8r(immMasked, dest);
return;
}
RegisterID shiftTmp = claimScratch();
m_assembler.loadConstant(immMasked, shiftTmp);
m_assembler.shldRegReg(dest, shiftTmp);
releaseScratch(shiftTmp);
}
void lshift32(RegisterID src, TrustedImm32 shiftamount, RegisterID dest)
{
move(src, dest);
lshift32(shiftamount, dest);
}
void mul32(RegisterID src, RegisterID dest)
{
mul32(src, dest, dest);
}
void mul32(RegisterID src1, RegisterID src2, RegisterID dest)
{
m_assembler.imullRegReg(src1, src2);
m_assembler.stsmacl(dest);
}
void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
if (src == dest) {
RegisterID immval = claimScratch();
move(imm, immval);
mul32(immval, dest);
releaseScratch(immval);
} else {
move(imm, dest);
mul32(src, dest);
}
}
void or32(RegisterID src, RegisterID dest)
{
m_assembler.orlRegReg(src, dest);
}
void or32(TrustedImm32 imm, RegisterID dest)
{
if ((imm.m_value <= 255) && (imm.m_value >= 0) && (dest == SH4Registers::r0)) {
m_assembler.orlImm8r(imm.m_value, dest);
return;
}
RegisterID scr = claimScratch();
m_assembler.loadConstant(imm.m_value, scr);
m_assembler.orlRegReg(scr, dest);
releaseScratch(scr);
}
void or32(RegisterID op1, RegisterID op2, RegisterID dest)
{
if (op1 == op2)
move(op1, dest);
else if (op1 == dest)
or32(op2, dest);
else {
move(op2, dest);
or32(op1, dest);
}
}
void or32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
if (src != dest) {
move(imm, dest);
or32(src, dest);
return;
}
or32(imm, dest);
}
void or32(RegisterID src, AbsoluteAddress address)
{
RegisterID destptr = claimScratch();
move(TrustedImmPtr(address.m_ptr), destptr);
RegisterID destval = claimScratch();
m_assembler.movlMemReg(destptr, destval);
m_assembler.orlRegReg(src, destval);
m_assembler.movlRegMem(destval, destptr);
releaseScratch(destval);
releaseScratch(destptr);
}
void xor32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
if (src != dest) {
move(imm, dest);
xor32(src, dest);
return;
}
xor32(imm, dest);
}
void rshift32(RegisterID shiftamount, RegisterID dest)
{
RegisterID shiftTmp = claimScratch();
m_assembler.loadConstant(0x1f, shiftTmp);
m_assembler.andlRegReg(shiftamount, shiftTmp);
m_assembler.neg(shiftTmp, shiftTmp);
m_assembler.shadRegReg(dest, shiftTmp);
releaseScratch(shiftTmp);
}
void rshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest)
{
move(src, dest);
rshift32(shiftAmount, dest);
}
void rshift32(TrustedImm32 imm, RegisterID dest)
{
int immMasked = imm.m_value & 0x1f;
if (!immMasked)
return;
if (immMasked == 1) {
m_assembler.sharImm8r(immMasked, dest);
return;
}
RegisterID shiftTmp = claimScratch();
m_assembler.loadConstant(-immMasked, shiftTmp);
m_assembler.shadRegReg(dest, shiftTmp);
releaseScratch(shiftTmp);
}
void rshift32(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
move(src, dest);
rshift32(imm, dest);
}
void sub32(RegisterID src, RegisterID dest)
{
m_assembler.sublRegReg(src, dest);
}
void sub32(RegisterID left, RegisterID right, RegisterID dest)
{
if (dest == right) {
neg32(dest);
add32(left, dest);
return;
}
move(left, dest);
sub32(right, dest);
}
void sub32(TrustedImm32 imm, AbsoluteAddress address)
{
if (!imm.m_value)
return;
RegisterID result = claimScratch();
RegisterID scratchReg = claimScratch();
move(TrustedImmPtr(address.m_ptr), scratchReg);
m_assembler.movlMemReg(scratchReg, result);
if (m_assembler.isImmediate(-imm.m_value))
m_assembler.addlImm8r(-imm.m_value, result);
else {
m_assembler.loadConstant(imm.m_value, scratchReg3);
m_assembler.sublRegReg(scratchReg3, result);
}
store32(result, scratchReg);
releaseScratch(result);
releaseScratch(scratchReg);
}
void sub32(TrustedImm32 imm, Address address)
{
add32(TrustedImm32(-imm.m_value), address);
}
void add32(TrustedImm32 imm, AbsoluteAddress address)
{
if (!imm.m_value)
return;
RegisterID result = claimScratch();
RegisterID scratchReg = claimScratch();
move(TrustedImmPtr(address.m_ptr), scratchReg);
m_assembler.movlMemReg(scratchReg, result);
if (m_assembler.isImmediate(imm.m_value))
m_assembler.addlImm8r(imm.m_value, result);
else {
m_assembler.loadConstant(imm.m_value, scratchReg3);
m_assembler.addlRegReg(scratchReg3, result);
}
store32(result, scratchReg);
releaseScratch(result);
releaseScratch(scratchReg);
}
void add64(TrustedImm32 imm, AbsoluteAddress address)
{
RegisterID scr1 = claimScratch();
RegisterID scr2 = claimScratch();
// Add 32-bit LSB first.
move(TrustedImmPtr(address.m_ptr), scratchReg3);
m_assembler.movlMemReg(scratchReg3, scr1); // scr1 = 32-bit LSB of int64 @ address
m_assembler.loadConstant(imm.m_value, scr2);
m_assembler.clrt();
m_assembler.addclRegReg(scr1, scr2);
m_assembler.movlRegMem(scr2, scratchReg3); // Update address with 32-bit LSB result.
// Then add 32-bit MSB.
m_assembler.addlImm8r(4, scratchReg3);
m_assembler.movlMemReg(scratchReg3, scr1); // scr1 = 32-bit MSB of int64 @ address
m_assembler.movt(scr2);
if (imm.m_value < 0)
m_assembler.addlImm8r(-1, scr2); // Sign extend imm value if needed.
m_assembler.addvlRegReg(scr2, scr1);
m_assembler.movlRegMem(scr1, scratchReg3); // Update (address + 4) with 32-bit MSB result.
releaseScratch(scr2);
releaseScratch(scr1);
}
void sub32(TrustedImm32 imm, RegisterID dest)
{
if (!imm.m_value)
return;
if (m_assembler.isImmediate(-imm.m_value)) {
m_assembler.addlImm8r(-imm.m_value, dest);
return;
}
RegisterID scr = claimScratch();
m_assembler.loadConstant(imm.m_value, scr);
m_assembler.sublRegReg(scr, dest);
releaseScratch(scr);
}
void sub32(Address src, RegisterID dest)
{
RegisterID scr = claimScratch();
load32(src, scr);
m_assembler.sublRegReg(scr, dest);
releaseScratch(scr);
}
void xor32(RegisterID src, RegisterID dest)
{
m_assembler.xorlRegReg(src, dest);
}
void xor32(RegisterID src1, RegisterID src2, RegisterID dest)
{
if (src1 == dest)
xor32(src2, dest);
else {
move(src2, dest);
xor32(src1, dest);
}
}
void xor32(TrustedImm32 imm, RegisterID srcDest)
{
if (imm.m_value == -1) {
m_assembler.notlReg(srcDest, srcDest);
return;
}
if ((srcDest != SH4Registers::r0) || (imm.m_value > 255) || (imm.m_value < 0)) {
RegisterID scr = claimScratch();
m_assembler.loadConstant(imm.m_value, scr);
m_assembler.xorlRegReg(scr, srcDest);
releaseScratch(scr);
return;
}
m_assembler.xorlImm8r(imm.m_value, srcDest);
}
void compare32(int imm, RegisterID dst, RelationalCondition cond)
{
if (((cond == Equal) || (cond == NotEqual)) && (dst == SH4Registers::r0) && m_assembler.isImmediate(imm)) {
m_assembler.cmpEqImmR0(imm, dst);
return;
}
if (((cond == Equal) || (cond == NotEqual)) && !imm) {
m_assembler.testlRegReg(dst, dst);
return;
}
RegisterID scr = claimScratch();
m_assembler.loadConstant(imm, scr);
m_assembler.cmplRegReg(scr, dst, SH4Condition(cond));
releaseScratch(scr);
}
void compare32(int offset, RegisterID base, RegisterID left, RelationalCondition cond)
{
RegisterID scr = claimScratch();
if (!offset) {
m_assembler.movlMemReg(base, scr);
m_assembler.cmplRegReg(scr, left, SH4Condition(cond));
releaseScratch(scr);
return;
}
if ((offset < 0) || (offset >= 64)) {
m_assembler.loadConstant(offset, scr);
m_assembler.addlRegReg(base, scr);
m_assembler.movlMemReg(scr, scr);
m_assembler.cmplRegReg(scr, left, SH4Condition(cond));
releaseScratch(scr);
return;
}
m_assembler.movlMemReg(offset >> 2, base, scr);
m_assembler.cmplRegReg(scr, left, SH4Condition(cond));
releaseScratch(scr);
}
void testImm(int imm, int offset, RegisterID base)
{
RegisterID scr = claimScratch();
load32(base, offset, scr);
RegisterID scr1 = claimScratch();
move(TrustedImm32(imm), scr1);
m_assembler.testlRegReg(scr, scr1);
releaseScratch(scr);
releaseScratch(scr1);
}
void testlImm(int imm, RegisterID dst)
{
if ((dst == SH4Registers::r0) && (imm <= 255) && (imm >= 0)) {
m_assembler.testlImm8r(imm, dst);
return;
}
RegisterID scr = claimScratch();
m_assembler.loadConstant(imm, scr);
m_assembler.testlRegReg(scr, dst);
releaseScratch(scr);
}
void compare32(RegisterID right, int offset, RegisterID base, RelationalCondition cond)
{
if (!offset) {
RegisterID scr = claimScratch();
m_assembler.movlMemReg(base, scr);
m_assembler.cmplRegReg(right, scr, SH4Condition(cond));
releaseScratch(scr);
return;
}
if ((offset < 0) || (offset >= 64)) {
RegisterID scr = claimScratch();
m_assembler.loadConstant(offset, scr);
m_assembler.addlRegReg(base, scr);
m_assembler.movlMemReg(scr, scr);
m_assembler.cmplRegReg(right, scr, SH4Condition(cond));
releaseScratch(scr);
return;
}
RegisterID scr = claimScratch();
m_assembler.movlMemReg(offset >> 2, base, scr);
m_assembler.cmplRegReg(right, scr, SH4Condition(cond));
releaseScratch(scr);
}
void compare32(int imm, int offset, RegisterID base, RelationalCondition cond)
{
RegisterID scr = claimScratch();
load32(base, offset, scr);
RegisterID scr1 = claimScratch();
move(TrustedImm32(imm), scr1);
m_assembler.cmplRegReg(scr1, scr, SH4Condition(cond));
releaseScratch(scr1);
releaseScratch(scr);
}
// Memory access operation
ALWAYS_INLINE void loadEffectiveAddress(BaseIndex address, RegisterID dest, int extraoffset = 0)
{
if (dest == address.base) {
RegisterID scaledIndex = claimScratch();
move(address.index, scaledIndex);
lshift32(TrustedImm32(address.scale), scaledIndex);
add32(scaledIndex, dest);
releaseScratch(scaledIndex);
} else {
move(address.index, dest);
lshift32(TrustedImm32(address.scale), dest);
add32(address.base, dest);
}
add32(TrustedImm32(address.offset + extraoffset), dest);
}
void load32(ImplicitAddress address, RegisterID dest)
{
load32(address.base, address.offset, dest);
}
void load8(ImplicitAddress address, RegisterID dest)
{
load8(address.base, address.offset, dest);
}
void load8(BaseIndex address, RegisterID dest)
{
RegisterID scr = claimScratch();
move(address.index, scr);
lshift32(TrustedImm32(address.scale), scr);
add32(address.base, scr);
load8(scr, address.offset, dest);
releaseScratch(scr);
}
void load8(AbsoluteAddress address, RegisterID dest)
{
move(TrustedImmPtr(address.m_ptr), dest);
m_assembler.movbMemReg(dest, dest);
m_assembler.extub(dest, dest);
}
void load8(const void* address, RegisterID dest)
{
load8(AbsoluteAddress(address), dest);
}
void load8PostInc(RegisterID base, RegisterID dest)
{
m_assembler.movbMemRegIn(base, dest);
m_assembler.extub(dest, dest);
}
void load8SignedExtendTo32(BaseIndex address, RegisterID dest)
{
RegisterID scr = claimScratch();
move(address.index, scr);
lshift32(TrustedImm32(address.scale), scr);
add32(address.base, scr);
load8SignedExtendTo32(scr, address.offset, dest);
releaseScratch(scr);
}
void load32(BaseIndex address, RegisterID dest)
{
RegisterID scr = claimScratch();
move(address.index, scr);
lshift32(TrustedImm32(address.scale), scr);
add32(address.base, scr);
load32(scr, address.offset, dest);
releaseScratch(scr);
}
void load32(const void* address, RegisterID dest)
{
move(TrustedImmPtr(address), dest);
m_assembler.movlMemReg(dest, dest);
}
void load32(RegisterID base, int offset, RegisterID dest)
{
if (!offset) {
m_assembler.movlMemReg(base, dest);
return;
}
if ((offset >= 0) && (offset < 64)) {
m_assembler.movlMemReg(offset >> 2, base, dest);
return;
}
RegisterID scr = (dest == base) ? claimScratch() : dest;
m_assembler.loadConstant(offset, scr);
if (base == SH4Registers::r0)
m_assembler.movlR0mr(scr, dest);
else {
m_assembler.addlRegReg(base, scr);
m_assembler.movlMemReg(scr, dest);
}
if (dest == base)
releaseScratch(scr);
}
void load8SignedExtendTo32(RegisterID base, int offset, RegisterID dest)
{
if (!offset) {
m_assembler.movbMemReg(base, dest);
return;
}
if ((offset > 0) && (offset <= 15) && (dest == SH4Registers::r0)) {
m_assembler.movbMemReg(offset, base, dest);
return;
}
RegisterID scr = (dest == base) ? claimScratch() : dest;
m_assembler.loadConstant(offset, scr);
if (base == SH4Registers::r0)
m_assembler.movbR0mr(scr, dest);
else {
m_assembler.addlRegReg(base, scr);
m_assembler.movbMemReg(scr, dest);
}
if (dest == base)
releaseScratch(scr);
}
void load8(RegisterID base, int offset, RegisterID dest)
{
load8SignedExtendTo32(base, offset, dest);
m_assembler.extub(dest, dest);
}
void load32(RegisterID src, RegisterID dst)
{
m_assembler.movlMemReg(src, dst);
}
void load16(ImplicitAddress address, RegisterID dest)
{
if (!address.offset) {
m_assembler.movwMemReg(address.base, dest);
m_assembler.extuw(dest, dest);
return;
}
if ((address.offset > 0) && (address.offset <= 30) && (dest == SH4Registers::r0)) {
m_assembler.movwMemReg(address.offset >> 1, address.base, dest);
m_assembler.extuw(dest, dest);
return;
}
RegisterID scr = (dest == address.base) ? claimScratch() : dest;
m_assembler.loadConstant(address.offset, scr);
if (address.base == SH4Registers::r0)
m_assembler.movwR0mr(scr, dest);
else {
m_assembler.addlRegReg(address.base, scr);
m_assembler.movwMemReg(scr, dest);
}
m_assembler.extuw(dest, dest);
if (dest == address.base)
releaseScratch(scr);
}
void load16Unaligned(BaseIndex address, RegisterID dest)
{
RegisterID scr = claimScratch();
loadEffectiveAddress(address, scr);
RegisterID scr1 = claimScratch();
load8PostInc(scr, scr1);
load8(scr, dest);
m_assembler.shllImm8r(8, dest);
or32(scr1, dest);
releaseScratch(scr);
releaseScratch(scr1);
}
void load16(RegisterID src, RegisterID dest)
{
m_assembler.movwMemReg(src, dest);
m_assembler.extuw(dest, dest);
}
void load16SignedExtendTo32(RegisterID src, RegisterID dest)
{
m_assembler.movwMemReg(src, dest);
}
void load16(BaseIndex address, RegisterID dest)
{
load16SignedExtendTo32(address, dest);
m_assembler.extuw(dest, dest);
}
void load16PostInc(RegisterID base, RegisterID dest)
{
m_assembler.movwMemRegIn(base, dest);
m_assembler.extuw(dest, dest);
}
void load16SignedExtendTo32(BaseIndex address, RegisterID dest)
{
RegisterID scr = claimScratch();
move(address.index, scr);
lshift32(TrustedImm32(address.scale), scr);
add32(TrustedImm32(address.offset), scr);
if (address.base == SH4Registers::r0)
m_assembler.movwR0mr(scr, dest);
else {
add32(address.base, scr);
load16SignedExtendTo32(scr, dest);
}
releaseScratch(scr);
}
void store8(RegisterID src, BaseIndex address)
{
RegisterID scr = claimScratch();
move(address.index, scr);
lshift32(TrustedImm32(address.scale), scr);
add32(TrustedImm32(address.offset), scr);
if (address.base == SH4Registers::r0)
m_assembler.movbRegMemr0(src, scr);
else {
add32(address.base, scr);
m_assembler.movbRegMem(src, scr);
}
releaseScratch(scr);
}
void store8(RegisterID src, void* address)
{
RegisterID destptr = claimScratch();
move(TrustedImmPtr(address), destptr);
m_assembler.movbRegMem(src, destptr);
releaseScratch(destptr);
}
void store8(TrustedImm32 imm, void* address)
{
TrustedImm32 imm8(static_cast<int8_t>(imm.m_value));
RegisterID dstptr = claimScratch();
move(TrustedImmPtr(address), dstptr);
RegisterID srcval = claimScratch();
move(imm8, srcval);
m_assembler.movbRegMem(srcval, dstptr);
releaseScratch(dstptr);
releaseScratch(srcval);
}
void store8(TrustedImm32 imm, Address address)
{
TrustedImm32 imm8(static_cast<int8_t>(imm.m_value));
RegisterID dstptr = claimScratch();
move(address.base, dstptr);
add32(TrustedImm32(address.offset), dstptr);
RegisterID srcval = claimScratch();
move(imm8, srcval);
m_assembler.movbRegMem(srcval, dstptr);
releaseScratch(dstptr);
releaseScratch(srcval);
}
void store16(RegisterID src, BaseIndex address)
{
RegisterID scr = claimScratch();
move(address.index, scr);
lshift32(TrustedImm32(address.scale), scr);
add32(TrustedImm32(address.offset), scr);
if (address.base == SH4Registers::r0)
m_assembler.movwRegMemr0(src, scr);
else {
add32(address.base, scr);
m_assembler.movwRegMem(src, scr);
}
releaseScratch(scr);
}
void store32(RegisterID src, ImplicitAddress address)
{
if (!address.offset) {
m_assembler.movlRegMem(src, address.base);
return;
}
if ((address.offset >= 0) && (address.offset < 64)) {
m_assembler.movlRegMem(src, address.offset >> 2, address.base);
return;
}
RegisterID scr = claimScratch();
m_assembler.loadConstant(address.offset, scr);
if (address.base == SH4Registers::r0)
m_assembler.movlRegMemr0(src, scr);
else {
m_assembler.addlRegReg(address.base, scr);
m_assembler.movlRegMem(src, scr);
}
releaseScratch(scr);
}
void store32(RegisterID src, RegisterID dst)
{
m_assembler.movlRegMem(src, dst);
}
void store32(TrustedImm32 imm, ImplicitAddress address)
{
RegisterID scr = claimScratch();
m_assembler.loadConstant(imm.m_value, scr);
store32(scr, address);
releaseScratch(scr);
}
void store32(RegisterID src, BaseIndex address)
{
RegisterID scr = claimScratch();
move(address.index, scr);
lshift32(TrustedImm32(address.scale), scr);
add32(address.base, scr);
store32(src, Address(scr, address.offset));
releaseScratch(scr);
}
void store32(TrustedImm32 imm, void* address)
{
RegisterID scr = claimScratch();
RegisterID scr1 = claimScratch();
m_assembler.loadConstant(imm.m_value, scr);
move(TrustedImmPtr(address), scr1);
m_assembler.movlRegMem(scr, scr1);
releaseScratch(scr);
releaseScratch(scr1);
}
void store32(RegisterID src, void* address)
{
RegisterID scr = claimScratch();
move(TrustedImmPtr(address), scr);
m_assembler.movlRegMem(src, scr);
releaseScratch(scr);
}
void store32(TrustedImm32 imm, BaseIndex address)
{
RegisterID destptr = claimScratch();
loadEffectiveAddress(address, destptr);
RegisterID srcval = claimScratch();
move(imm, srcval);
m_assembler.movlRegMem(srcval, destptr);
releaseScratch(srcval);
releaseScratch(destptr);
}
DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest)
{
RegisterID scr = claimScratch();
DataLabel32 label(this);
m_assembler.loadConstantUnReusable(address.offset, scr);
m_assembler.addlRegReg(address.base, scr);
m_assembler.movlMemReg(scr, dest);
releaseScratch(scr);
return label;
}
DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address)
{
RegisterID scr = claimScratch();
DataLabel32 label(this);
m_assembler.loadConstantUnReusable(address.offset, scr);
m_assembler.addlRegReg(address.base, scr);
m_assembler.movlRegMem(src, scr);
releaseScratch(scr);
return label;
}
DataLabelCompact load32WithCompactAddressOffsetPatch(Address address, RegisterID dest)
{
DataLabelCompact dataLabel(this);
ASSERT(isCompactPtrAlignedAddressOffset(address.offset));
m_assembler.movlMemRegCompact(address.offset >> 2, address.base, dest);
return dataLabel;
}
ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest)
{
ConvertibleLoadLabel result(this);
RegisterID scr = claimScratch();
m_assembler.movImm8(address.offset, scr);
m_assembler.addlRegReg(address.base, scr);
m_assembler.movlMemReg(scr, dest);
releaseScratch(scr);
return result;
}
// Floating-point operations
static bool supportsFloatingPoint() { return true; }
static bool supportsFloatingPointTruncate() { return true; }
static bool supportsFloatingPointSqrt() { return true; }
static bool supportsFloatingPointAbs() { return true; }
static bool supportsFloatingPointRounding() { return false; }
void moveDoubleToInts(FPRegisterID src, RegisterID dest1, RegisterID dest2)
{
m_assembler.fldsfpul((FPRegisterID)(src + 1));
m_assembler.stsfpulReg(dest1);
m_assembler.fldsfpul(src);
m_assembler.stsfpulReg(dest2);
}
void moveIntsToDouble(RegisterID src1, RegisterID src2, FPRegisterID dest, FPRegisterID)
{
m_assembler.ldsrmfpul(src1);
m_assembler.fstsfpul((FPRegisterID)(dest + 1));
m_assembler.ldsrmfpul(src2);
m_assembler.fstsfpul(dest);
}
void moveDouble(FPRegisterID src, FPRegisterID dest)
{
if (src != dest) {
m_assembler.fmovsRegReg((FPRegisterID)(src + 1), (FPRegisterID)(dest + 1));
m_assembler.fmovsRegReg(src, dest);
}
}
void swapDouble(FPRegisterID fr1, FPRegisterID fr2)
{
if (fr1 != fr2) {
m_assembler.fldsfpul((FPRegisterID)(fr1 + 1));
m_assembler.fmovsRegReg((FPRegisterID)(fr2 + 1), (FPRegisterID)(fr1 + 1));
m_assembler.fstsfpul((FPRegisterID)(fr2 + 1));
m_assembler.fldsfpul(fr1);
m_assembler.fmovsRegReg(fr2, fr1);
m_assembler.fstsfpul(fr2);
}
}
void loadFloat(BaseIndex address, FPRegisterID dest)
{
RegisterID scr = claimScratch();
loadEffectiveAddress(address, scr);
m_assembler.fmovsReadrm(scr, dest);
releaseScratch(scr);
}
void loadDouble(BaseIndex address, FPRegisterID dest)
{
RegisterID scr = claimScratch();
loadEffectiveAddress(address, scr);
m_assembler.fmovsReadrminc(scr, (FPRegisterID)(dest + 1));
m_assembler.fmovsReadrm(scr, dest);
releaseScratch(scr);
}
void loadDouble(ImplicitAddress address, FPRegisterID dest)
{
RegisterID scr = claimScratch();
m_assembler.loadConstant(address.offset, scr);
if (address.base == SH4Registers::r0) {
m_assembler.fmovsReadr0r(scr, (FPRegisterID)(dest + 1));
m_assembler.addlImm8r(4, scr);
m_assembler.fmovsReadr0r(scr, dest);
releaseScratch(scr);
return;
}
m_assembler.addlRegReg(address.base, scr);
m_assembler.fmovsReadrminc(scr, (FPRegisterID)(dest + 1));
m_assembler.fmovsReadrm(scr, dest);
releaseScratch(scr);
}
void loadDouble(TrustedImmPtr address, FPRegisterID dest)
{
RegisterID scr = claimScratch();
move(address, scr);
m_assembler.fmovsReadrminc(scr, (FPRegisterID)(dest + 1));
m_assembler.fmovsReadrm(scr, dest);
releaseScratch(scr);
}
void storeFloat(FPRegisterID src, BaseIndex address)
{
RegisterID scr = claimScratch();
loadEffectiveAddress(address, scr);
m_assembler.fmovsWriterm(src, scr);
releaseScratch(scr);
}
void storeDouble(FPRegisterID src, ImplicitAddress address)
{
RegisterID scr = claimScratch();
m_assembler.loadConstant(address.offset + 8, scr);
m_assembler.addlRegReg(address.base, scr);
m_assembler.fmovsWriterndec(src, scr);
m_assembler.fmovsWriterndec((FPRegisterID)(src + 1), scr);
releaseScratch(scr);
}
void storeDouble(FPRegisterID src, BaseIndex address)
{
RegisterID scr = claimScratch();
loadEffectiveAddress(address, scr, 8);
m_assembler.fmovsWriterndec(src, scr);
m_assembler.fmovsWriterndec((FPRegisterID)(src + 1), scr);
releaseScratch(scr);
}
void addDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
if (op1 == dest)
addDouble(op2, dest);
else {
moveDouble(op2, dest);
addDouble(op1, dest);
}
}
void storeDouble(FPRegisterID src, TrustedImmPtr address)
{
RegisterID scr = claimScratch();
m_assembler.loadConstant(reinterpret_cast<uint32_t>(const_cast<void*>(address.m_value)) + 8, scr);
m_assembler.fmovsWriterndec(src, scr);
m_assembler.fmovsWriterndec((FPRegisterID)(src + 1), scr);
releaseScratch(scr);
}
void addDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.daddRegReg(src, dest);
}
void addDouble(AbsoluteAddress address, FPRegisterID dest)
{
loadDouble(TrustedImmPtr(address.m_ptr), fscratch);
addDouble(fscratch, dest);
}
void addDouble(Address address, FPRegisterID dest)
{
loadDouble(address, fscratch);
addDouble(fscratch, dest);
}
void subDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.dsubRegReg(src, dest);
}
void subDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
if (op2 == dest) {
moveDouble(op1, fscratch);
subDouble(op2, fscratch);
moveDouble(fscratch, dest);
} else {
moveDouble(op1, dest);
subDouble(op2, dest);
}
}
void subDouble(Address address, FPRegisterID dest)
{
loadDouble(address, fscratch);
subDouble(fscratch, dest);
}
void mulDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.dmulRegReg(src, dest);
}
void mulDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
if (op1 == dest)
mulDouble(op2, dest);
else {
moveDouble(op2, dest);
mulDouble(op1, dest);
}
}
void mulDouble(Address address, FPRegisterID dest)
{
loadDouble(address, fscratch);
mulDouble(fscratch, dest);
}
void divDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.ddivRegReg(src, dest);
}
void divDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
if (op2 == dest) {
moveDouble(op1, fscratch);
divDouble(op2, fscratch);
moveDouble(fscratch, dest);
} else {
moveDouble(op1, dest);
divDouble(op2, dest);
}
}
void negateDouble(FPRegisterID src, FPRegisterID dest)
{
moveDouble(src, dest);
m_assembler.dneg(dest);
}
void convertFloatToDouble(FPRegisterID src, FPRegisterID dst)
{
m_assembler.fldsfpul(src);
m_assembler.dcnvsd(dst);
}
void convertDoubleToFloat(FPRegisterID src, FPRegisterID dst)
{
m_assembler.dcnvds(src);
m_assembler.fstsfpul(dst);
}
void convertInt32ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.ldsrmfpul(src);
m_assembler.floatfpulDreg(dest);
}
void convertInt32ToDouble(AbsoluteAddress src, FPRegisterID dest)
{
RegisterID scr = claimScratch();
load32(src.m_ptr, scr);
convertInt32ToDouble(scr, dest);
releaseScratch(scr);
}
void convertInt32ToDouble(Address src, FPRegisterID dest)
{
RegisterID scr = claimScratch();
load32(src, scr);
convertInt32ToDouble(scr, dest);
releaseScratch(scr);
}
void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest)
{
RegisterID scr = claimScratch();
Jump m_jump;
JumpList end;
loadEffectiveAddress(address, scr);
RegisterID scr1 = claimScratch();
if (dest != SH4Registers::r0)
move(SH4Registers::r0, scr1);
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 58, sizeof(uint32_t));
move(scr, SH4Registers::r0);
m_assembler.testlImm8r(0x3, SH4Registers::r0);
m_jump = Jump(m_assembler.jne(), SH4Assembler::JumpNear);
if (dest != SH4Registers::r0)
move(scr1, SH4Registers::r0);
load32(scr, dest);
end.append(Jump(m_assembler.bra(), SH4Assembler::JumpNear));
m_assembler.nop();
m_jump.link(this);
m_assembler.testlImm8r(0x1, SH4Registers::r0);
if (dest != SH4Registers::r0)
move(scr1, SH4Registers::r0);
m_jump = Jump(m_assembler.jne(), SH4Assembler::JumpNear);
load16PostInc(scr, scr1);
load16(scr, dest);
m_assembler.shllImm8r(16, dest);
or32(scr1, dest);
end.append(Jump(m_assembler.bra(), SH4Assembler::JumpNear));
m_assembler.nop();
m_jump.link(this);
load8PostInc(scr, scr1);
load16PostInc(scr, dest);
m_assembler.shllImm8r(8, dest);
or32(dest, scr1);
load8(scr, dest);
m_assembler.shllImm8r(8, dest);
m_assembler.shllImm8r(16, dest);
or32(scr1, dest);
end.link(this);
releaseScratch(scr);
releaseScratch(scr1);
}
Jump branch32WithUnalignedHalfWords(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
{
RegisterID scr = scratchReg3;
load32WithUnalignedHalfWords(left, scr);
if (((cond == Equal) || (cond == NotEqual)) && !right.m_value)
m_assembler.testlRegReg(scr, scr);
else
compare32(right.m_value, scr, cond);
if (cond == NotEqual)
return branchFalse();
return branchTrue();
}
Jump branchDoubleNonZero(FPRegisterID reg, FPRegisterID scratch)
{
m_assembler.movImm8(0, scratchReg3);
convertInt32ToDouble(scratchReg3, scratch);
return branchDouble(DoubleNotEqual, reg, scratch);
}
Jump branchDoubleZeroOrNaN(FPRegisterID reg, FPRegisterID scratch)
{
m_assembler.movImm8(0, scratchReg3);
convertInt32ToDouble(scratchReg3, scratch);
return branchDouble(DoubleEqualOrUnordered, reg, scratch);
}
Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right)
{
if (cond == DoubleEqual) {
m_assembler.dcmppeq(right, left);
return branchTrue();
}
if (cond == DoubleNotEqual) {
JumpList end;
m_assembler.dcmppeq(left, left);
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 22, sizeof(uint32_t));
end.append(Jump(m_assembler.jne(), SH4Assembler::JumpNear));
m_assembler.dcmppeq(right, right);
end.append(Jump(m_assembler.jne(), SH4Assembler::JumpNear));
m_assembler.dcmppeq(right, left);
Jump m_jump = branchFalse();
end.link(this);
return m_jump;
}
if (cond == DoubleGreaterThan) {
m_assembler.dcmppgt(right, left);
return branchTrue();
}
if (cond == DoubleGreaterThanOrEqual) {
JumpList end;
m_assembler.dcmppeq(left, left);
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 22, sizeof(uint32_t));
end.append(Jump(m_assembler.jne(), SH4Assembler::JumpNear));
m_assembler.dcmppeq(right, right);
end.append(Jump(m_assembler.jne(), SH4Assembler::JumpNear));
m_assembler.dcmppgt(left, right);
Jump m_jump = branchFalse();
end.link(this);
return m_jump;
}
if (cond == DoubleLessThan) {
m_assembler.dcmppgt(left, right);
return branchTrue();
}
if (cond == DoubleLessThanOrEqual) {
JumpList end;
m_assembler.dcmppeq(left, left);
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 22, sizeof(uint32_t));
end.append(Jump(m_assembler.jne(), SH4Assembler::JumpNear));
m_assembler.dcmppeq(right, right);
end.append(Jump(m_assembler.jne(), SH4Assembler::JumpNear));
m_assembler.dcmppgt(right, left);
Jump m_jump = branchFalse();
end.link(this);
return m_jump;
}
if (cond == DoubleEqualOrUnordered) {
JumpList takeBranch;
m_assembler.dcmppeq(left, left);
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 22, sizeof(uint32_t));
takeBranch.append(Jump(m_assembler.jne(), SH4Assembler::JumpNear));
m_assembler.dcmppeq(right, right);
takeBranch.append(Jump(m_assembler.jne(), SH4Assembler::JumpNear));
m_assembler.dcmppeq(left, right);
m_assembler.branch(BF_OPCODE, 2);
takeBranch.link(this);
return Jump(m_assembler.extraInstrForBranch(scratchReg3));
}
if (cond == DoubleGreaterThanOrUnordered) {
JumpList takeBranch;
m_assembler.dcmppeq(left, left);
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 22, sizeof(uint32_t));
takeBranch.append(Jump(m_assembler.jne(), SH4Assembler::JumpNear));
m_assembler.dcmppeq(right, right);
takeBranch.append(Jump(m_assembler.jne(), SH4Assembler::JumpNear));
m_assembler.dcmppgt(right, left);
m_assembler.branch(BF_OPCODE, 2);
takeBranch.link(this);
return Jump(m_assembler.extraInstrForBranch(scratchReg3));
}
if (cond == DoubleGreaterThanOrEqualOrUnordered) {
m_assembler.dcmppgt(left, right);
return branchFalse();
}
if (cond == DoubleLessThanOrUnordered) {
JumpList takeBranch;
m_assembler.dcmppeq(left, left);
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 22, sizeof(uint32_t));
takeBranch.append(Jump(m_assembler.jne(), SH4Assembler::JumpNear));
m_assembler.dcmppeq(right, right);
takeBranch.append(Jump(m_assembler.jne(), SH4Assembler::JumpNear));
m_assembler.dcmppgt(left, right);
m_assembler.branch(BF_OPCODE, 2);
takeBranch.link(this);
return Jump(m_assembler.extraInstrForBranch(scratchReg3));
}
if (cond == DoubleLessThanOrEqualOrUnordered) {
m_assembler.dcmppgt(right, left);
return branchFalse();
}
ASSERT(cond == DoubleNotEqualOrUnordered);
m_assembler.dcmppeq(right, left);
return branchFalse();
}
Jump branchTrue()
{
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 6, sizeof(uint32_t));
m_assembler.branch(BF_OPCODE, 2);
return Jump(m_assembler.extraInstrForBranch(scratchReg3));
}
Jump branchFalse()
{
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 6, sizeof(uint32_t));
m_assembler.branch(BT_OPCODE, 2);
return Jump(m_assembler.extraInstrForBranch(scratchReg3));
}
Jump branch32(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
{
RegisterID scr = claimScratch();
move(left.index, scr);
lshift32(TrustedImm32(left.scale), scr);
add32(left.base, scr);
load32(scr, left.offset, scr);
compare32(right.m_value, scr, cond);
releaseScratch(scr);
if (cond == NotEqual)
return branchFalse();
return branchTrue();
}
void sqrtDouble(FPRegisterID src, FPRegisterID dest)
{
moveDouble(src, dest);
m_assembler.dsqrt(dest);
}
void absDouble(FPRegisterID src, FPRegisterID dest)
{
moveDouble(src, dest);
m_assembler.dabs(dest);
}
NO_RETURN_DUE_TO_CRASH void ceilDouble(FPRegisterID, FPRegisterID)
{
ASSERT(!supportsFloatingPointRounding());
CRASH();
}
NO_RETURN_DUE_TO_CRASH void floorDouble(FPRegisterID, FPRegisterID)
{
ASSERT(!supportsFloatingPointRounding());
CRASH();
}
NO_RETURN_DUE_TO_CRASH void roundTowardZeroDouble(FPRegisterID, FPRegisterID)
{
ASSERT(!supportsFloatingPointRounding());
CRASH();
}
Jump branchTest8(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
{
TrustedImm32 mask8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, mask);
RegisterID addressTempRegister = claimScratch();
MacroAssemblerHelpers::load8OnCondition(*this, cond, address, addressTempRegister);
Jump jmp = branchTest32(cond, addressTempRegister, mask8);
releaseScratch(addressTempRegister);
return jmp;
}
Jump branchTest8(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
{
TrustedImm32 mask8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, mask);
RegisterID addressTempRegister = claimScratch();
MacroAssemblerHelpers::load8OnCondition(*this, cond, address, addressTempRegister);
Jump jmp = branchTest32(cond, addressTempRegister, mask8);
releaseScratch(addressTempRegister);
return jmp;
}
Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
TrustedImm32 mask8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, mask);
RegisterID addressTempRegister = claimScratch();
move(TrustedImmPtr(address.m_ptr), addressTempRegister);
MacroAssemblerHelpers::load8OnCondition(*this, cond, Address(addressTempRegister), addressTempRegister);
Jump jmp = branchTest32(cond, addressTempRegister, mask8);
releaseScratch(addressTempRegister);
return jmp;
}
void signExtend32ToPtr(RegisterID src, RegisterID dest)
{
move(src, dest);
}
void zeroExtend32ToPtr(RegisterID src, RegisterID dest)
{
move(src, dest);
}
Jump branch8(RelationalCondition cond, Address left, TrustedImm32 right)
{
TrustedImm32 right8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, right);
RegisterID addressTempRegister = claimScratch();
MacroAssemblerHelpers::load8OnCondition(*this, cond, left, addressTempRegister);
Jump jmp = branch32(cond, addressTempRegister, right8);
releaseScratch(addressTempRegister);
return jmp;
}
Jump branch8(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right)
{
TrustedImm32 right8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, right);
RegisterID addressTempRegister = claimScratch();
MacroAssemblerHelpers::load8OnCondition(*this, cond, left, addressTempRegister);
Jump jmp = branch32(cond, addressTempRegister, right8);
releaseScratch(addressTempRegister);
return jmp;
}
void compare8(RelationalCondition cond, Address left, TrustedImm32 right, RegisterID dest)
{
TrustedImm32 right8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, right);
RegisterID addressTempRegister = claimScratch();
MacroAssemblerHelpers::load8OnCondition(*this, cond, left, addressTempRegister);
compare32(cond, addressTempRegister, right8, dest);
releaseScratch(addressTempRegister);
}
enum BranchTruncateType { BranchIfTruncateFailed, BranchIfTruncateSuccessful };
Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest, BranchTruncateType branchType = BranchIfTruncateFailed)
{
Jump result;
truncateDoubleToInt32(src, dest);
RegisterID intscr = claimScratch();
m_assembler.loadConstant(0x7fffffff, intscr);
m_assembler.cmplRegReg(dest, intscr, SH4Condition(Equal));
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 12, sizeof(uint32_t));
if (branchType == BranchIfTruncateFailed) {
m_assembler.branch(BT_OPCODE, 2);
m_assembler.addlImm8r(1, intscr);
m_assembler.cmplRegReg(dest, intscr, SH4Condition(Equal));
result = branchTrue();
} else {
Jump out = Jump(m_assembler.je(), SH4Assembler::JumpNear);
m_assembler.addlImm8r(1, intscr);
m_assembler.cmplRegReg(dest, intscr, SH4Condition(Equal));
result = branchFalse();
out.link(this);
}
releaseScratch(intscr);
return result;
}
Jump branchTruncateDoubleToUint32(FPRegisterID src, RegisterID dest, BranchTruncateType branchType = BranchIfTruncateFailed)
{
Jump result;
RegisterID intscr = claimScratch();
m_assembler.loadConstant(0x80000000, intscr);
convertInt32ToDouble(intscr, fscratch);
addDouble(src, fscratch);
truncateDoubleToInt32(fscratch, dest);
m_assembler.cmplRegReg(dest, intscr, SH4Condition(Equal));
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 16, sizeof(uint32_t));
if (branchType == BranchIfTruncateFailed) {
m_assembler.branch(BT_OPCODE, 4);
m_assembler.addlImm8r(-1, intscr);
m_assembler.cmplRegReg(dest, intscr, SH4Condition(Equal));
m_assembler.addlImm8r(1, intscr);
m_assembler.sublRegReg(intscr, dest);
result = branchTrue();
} else {
Jump out = Jump(m_assembler.je(), SH4Assembler::JumpNear);
m_assembler.addlImm8r(-1, intscr);
m_assembler.cmplRegReg(dest, intscr, SH4Condition(Equal));
m_assembler.addlImm8r(1, intscr);
m_assembler.sublRegReg(intscr, dest);
result = branchFalse();
out.link(this);
}
releaseScratch(intscr);
return result;
}
void truncateDoubleToInt32(FPRegisterID src, RegisterID dest)
{
m_assembler.ftrcdrmfpul(src);
m_assembler.stsfpulReg(dest);
}
void truncateDoubleToUint32(FPRegisterID src, RegisterID dest)
{
RegisterID intscr = claimScratch();
m_assembler.loadConstant(0x80000000, intscr);
convertInt32ToDouble(intscr, fscratch);
addDouble(src, fscratch);
m_assembler.ftrcdrmfpul(fscratch);
m_assembler.stsfpulReg(dest);
m_assembler.sublRegReg(intscr, dest);
releaseScratch(intscr);
}
// Stack manipulation operations
void pop(RegisterID dest)
{
m_assembler.popReg(dest);
}
void push(RegisterID src)
{
m_assembler.pushReg(src);
}
void push(TrustedImm32 imm)
{
RegisterID scr = claimScratch();
m_assembler.loadConstant(imm.m_value, scr);
push(scr);
releaseScratch(scr);
}
// Register move operations
void move(TrustedImm32 imm, RegisterID dest)
{
m_assembler.loadConstant(imm.m_value, dest);
}
DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest)
{
m_assembler.ensureSpace(m_assembler.maxInstructionSize, sizeof(uint32_t));
DataLabelPtr dataLabel(this);
m_assembler.loadConstantUnReusable(reinterpret_cast<uint32_t>(initialValue.m_value), dest);
return dataLabel;
}
DataLabel32 moveWithPatch(TrustedImm32 initialValue, RegisterID dest)
{
m_assembler.ensureSpace(m_assembler.maxInstructionSize, sizeof(uint32_t));
DataLabel32 dataLabel(this);
m_assembler.loadConstantUnReusable(static_cast<uint32_t>(initialValue.m_value), dest);
return dataLabel;
}
void move(RegisterID src, RegisterID dest)
{
if (src != dest)
m_assembler.movlRegReg(src, dest);
}
void move(TrustedImmPtr imm, RegisterID dest)
{
m_assembler.loadConstant(imm.asIntptr(), dest);
}
void swap(RegisterID reg1, RegisterID reg2)
{
if (reg1 != reg2) {
xor32(reg1, reg2);
xor32(reg2, reg1);
xor32(reg1, reg2);
}
}
void compare32(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
{
m_assembler.cmplRegReg(right, left, SH4Condition(cond));
if (cond != NotEqual) {
m_assembler.movt(dest);
return;
}
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 4);
m_assembler.movImm8(0, dest);
m_assembler.branch(BT_OPCODE, 0);
m_assembler.movImm8(1, dest);
}
void compare32(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
{
if (left != dest) {
move(right, dest);
compare32(cond, left, dest, dest);
return;
}
RegisterID scr = claimScratch();
move(right, scr);
compare32(cond, left, scr, dest);
releaseScratch(scr);
}
void test8(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest)
{
ASSERT((cond == Zero) || (cond == NonZero));
TrustedImm32 mask8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, mask);
MacroAssemblerHelpers::load8OnCondition(*this, cond, address, dest);
if ((mask8.m_value & 0xff) == 0xff)
compare32(0, dest, static_cast<RelationalCondition>(cond));
else
testlImm(mask8.m_value, dest);
if (cond != NonZero) {
m_assembler.movt(dest);
return;
}
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 4);
m_assembler.movImm8(0, dest);
m_assembler.branch(BT_OPCODE, 0);
m_assembler.movImm8(1, dest);
}
void test32(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest)
{
ASSERT((cond == Zero) || (cond == NonZero));
load32(address, dest);
if (mask.m_value == -1)
compare32(0, dest, static_cast<RelationalCondition>(cond));
else
testlImm(mask.m_value, dest);
if (cond != NonZero) {
m_assembler.movt(dest);
return;
}
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 4);
m_assembler.movImm8(0, dest);
m_assembler.branch(BT_OPCODE, 0);
m_assembler.movImm8(1, dest);
}
void loadPtrLinkReg(ImplicitAddress address)
{
RegisterID scr = claimScratch();
load32(address, scr);
m_assembler.ldspr(scr);
releaseScratch(scr);
}
Jump branch32(RelationalCondition cond, RegisterID left, RegisterID right)
{
m_assembler.cmplRegReg(right, left, SH4Condition(cond));
/* BT label => BF off
nop LDR reg
nop braf @reg
nop nop
*/
if (cond == NotEqual)
return branchFalse();
return branchTrue();
}
Jump branch32(RelationalCondition cond, RegisterID left, TrustedImm32 right)
{
if (((cond == Equal) || (cond == NotEqual)) && !right.m_value)
m_assembler.testlRegReg(left, left);
else
compare32(right.m_value, left, cond);
if (cond == NotEqual)
return branchFalse();
return branchTrue();
}
Jump branch32(RelationalCondition cond, RegisterID left, Address right)
{
compare32(right.offset, right.base, left, cond);
if (cond == NotEqual)
return branchFalse();
return branchTrue();
}
Jump branch32(RelationalCondition cond, Address left, RegisterID right)
{
compare32(right, left.offset, left.base, cond);
if (cond == NotEqual)
return branchFalse();
return branchTrue();
}
Jump branch32(RelationalCondition cond, Address left, TrustedImm32 right)
{
compare32(right.m_value, left.offset, left.base, cond);
if (cond == NotEqual)
return branchFalse();
return branchTrue();
}
Jump branch32(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
{
RegisterID scr = claimScratch();
load32(left.m_ptr, scr);
m_assembler.cmplRegReg(right, scr, SH4Condition(cond));
releaseScratch(scr);
if (cond == NotEqual)
return branchFalse();
return branchTrue();
}
Jump branch32(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right)
{
RegisterID addressTempRegister = claimScratch();
move(TrustedImmPtr(left.m_ptr), addressTempRegister);
m_assembler.movlMemReg(addressTempRegister, addressTempRegister);
compare32(right.m_value, addressTempRegister, cond);
releaseScratch(addressTempRegister);
if (cond == NotEqual)
return branchFalse();
return branchTrue();
}
Jump branch8(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
{
TrustedImm32 right8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, right);
RegisterID lefttmp = claimScratch();
loadEffectiveAddress(left, lefttmp);
MacroAssemblerHelpers::load8OnCondition(*this, cond, lefttmp, lefttmp);
RegisterID righttmp = claimScratch();
m_assembler.loadConstant(right8.m_value, righttmp);
Jump result = branch32(cond, lefttmp, righttmp);
releaseScratch(lefttmp);
releaseScratch(righttmp);
return result;
}
Jump branchTest32(ResultCondition cond, RegisterID reg, RegisterID mask)
{
ASSERT((cond == Zero) || (cond == NonZero));
m_assembler.testlRegReg(reg, mask);
if (cond == NonZero) // NotEqual
return branchFalse();
return branchTrue();
}
Jump branchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
{
ASSERT((cond == Zero) || (cond == NonZero));
if (mask.m_value == -1)
m_assembler.testlRegReg(reg, reg);
else
testlImm(mask.m_value, reg);
if (cond == NonZero) // NotEqual
return branchFalse();
return branchTrue();
}
Jump branchTest32(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
{
ASSERT((cond == Zero) || (cond == NonZero));
if (mask.m_value == -1)
compare32(0, address.offset, address.base, static_cast<RelationalCondition>(cond));
else
testImm(mask.m_value, address.offset, address.base);
if (cond == NonZero) // NotEqual
return branchFalse();
return branchTrue();
}
Jump branchTest32(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
{
ASSERT((cond == Zero) || (cond == NonZero));
RegisterID scr = claimScratch();
move(address.index, scr);
lshift32(TrustedImm32(address.scale), scr);
add32(address.base, scr);
load32(scr, address.offset, scr);
if (mask.m_value == -1)
m_assembler.testlRegReg(scr, scr);
else
testlImm(mask.m_value, scr);
releaseScratch(scr);
if (cond == NonZero) // NotEqual
return branchFalse();
return branchTrue();
}
Jump jump()
{
return Jump(m_assembler.jmp());
}
void jump(RegisterID target)
{
m_assembler.jmpReg(target);
}
void jump(Address address)
{
RegisterID scr = claimScratch();
load32(address, scr);
m_assembler.jmpReg(scr);
releaseScratch(scr);
}
void jump(AbsoluteAddress address)
{
RegisterID scr = claimScratch();
move(TrustedImmPtr(address.m_ptr), scr);
m_assembler.movlMemReg(scr, scr);
m_assembler.jmpReg(scr);
releaseScratch(scr);
}
// Arithmetic control flow operations
Jump branchNeg32(ResultCondition cond, RegisterID srcDest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
if (cond == Overflow)
return branchMul32(cond, srcDest, TrustedImm32(-1), srcDest);
neg32(srcDest);
if (cond == Signed) {
m_assembler.cmppz(srcDest);
return branchFalse();
}
compare32(0, srcDest, Equal);
return (cond == NonZero) ? branchFalse() : branchTrue();
}
Jump branchAdd32(ResultCondition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == PositiveOrZero) || (cond == Zero) || (cond == NonZero));
if (cond == Overflow) {
m_assembler.addvlRegReg(src, dest);
return branchTrue();
}
m_assembler.addlRegReg(src, dest);
if ((cond == Signed) || (cond == PositiveOrZero)) {
m_assembler.cmppz(dest);
return (cond == Signed) ? branchFalse() : branchTrue();
}
compare32(0, dest, Equal);
return (cond == NonZero) ? branchFalse() : branchTrue();
}
Jump branchAdd32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == PositiveOrZero) || (cond == Zero) || (cond == NonZero));
if (cond == Overflow) {
if (src1 == dest)
m_assembler.addvlRegReg(src2, dest);
else {
move(src2, dest);
m_assembler.addvlRegReg(src1, dest);
}
return branchTrue();
}
add32(src1, src2, dest);
if ((cond == Signed) || (cond == PositiveOrZero)) {
m_assembler.cmppz(dest);
return (cond == Signed) ? branchFalse() : branchTrue();
}
compare32(0, dest, Equal);
return (cond == NonZero) ? branchFalse() : branchTrue();
}
Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == PositiveOrZero) || (cond == Zero) || (cond == NonZero));
RegisterID immval = claimScratch();
move(imm, immval);
Jump result = branchAdd32(cond, immval, dest);
releaseScratch(immval);
return result;
}
Jump branchAdd32(ResultCondition cond, RegisterID src, TrustedImm32 imm, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == PositiveOrZero) || (cond == Zero) || (cond == NonZero));
move(src, dest);
if (cond == Overflow) {
move(imm, scratchReg3);
m_assembler.addvlRegReg(scratchReg3, dest);
return branchTrue();
}
add32(imm, dest);
if ((cond == Signed) || (cond == PositiveOrZero)) {
m_assembler.cmppz(dest);
return (cond == Signed) ? branchFalse() : branchTrue();
}
compare32(0, dest, Equal);
return (cond == NonZero) ? branchFalse() : branchTrue();
}
Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, AbsoluteAddress dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == PositiveOrZero) || (cond == Zero) || (cond == NonZero));
bool result;
move(imm, scratchReg3);
RegisterID destptr = claimScratch();
RegisterID destval = claimScratch();
move(TrustedImmPtr(dest.m_ptr), destptr);
m_assembler.movlMemReg(destptr, destval);
if (cond == Overflow) {
m_assembler.addvlRegReg(scratchReg3, destval);
result = true;
} else {
m_assembler.addlRegReg(scratchReg3, destval);
if ((cond == Signed) || (cond == PositiveOrZero)) {
m_assembler.cmppz(destval);
result = (cond == PositiveOrZero);
} else {
m_assembler.testlRegReg(destval, destval);
result = (cond != NonZero);
}
}
m_assembler.movlRegMem(destval, destptr);
releaseScratch(destval);
releaseScratch(destptr);
return result ? branchTrue() : branchFalse();
}
Jump branchAdd32(ResultCondition cond, Address src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == PositiveOrZero) || (cond == Zero) || (cond == NonZero));
if (cond == Overflow) {
RegisterID srcVal = claimScratch();
load32(src, srcVal);
m_assembler.addvlRegReg(srcVal, dest);
releaseScratch(srcVal);
return branchTrue();
}
add32(src, dest);
if ((cond == Signed) || (cond == PositiveOrZero)) {
m_assembler.cmppz(dest);
return (cond == Signed) ? branchFalse() : branchTrue();
}
compare32(0, dest, Equal);
return (cond == NonZero) ? branchFalse() : branchTrue();
}
Jump branchMul32(ResultCondition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
if (cond == Overflow) {
RegisterID scrsign = claimScratch();
RegisterID msbres = claimScratch();
m_assembler.dmulslRegReg(src, dest);
m_assembler.stsmacl(dest);
m_assembler.cmppz(dest);
m_assembler.movt(scrsign);
m_assembler.addlImm8r(-1, scrsign);
m_assembler.stsmach(msbres);
m_assembler.cmplRegReg(msbres, scrsign, SH4Condition(Equal));
releaseScratch(msbres);
releaseScratch(scrsign);
return branchFalse();
}
mul32(src, dest);
if (cond == Signed) {
m_assembler.cmppz(dest);
return branchFalse();
}
compare32(0, dest, static_cast<RelationalCondition>(cond));
return (cond == NonZero) ? branchFalse() : branchTrue();
}
Jump branchMul32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
if (cond == Overflow) {
RegisterID scrsign = claimScratch();
RegisterID msbres = claimScratch();
m_assembler.dmulslRegReg(src1, src2);
m_assembler.stsmacl(dest);
m_assembler.cmppz(dest);
m_assembler.movt(scrsign);
m_assembler.addlImm8r(-1, scrsign);
m_assembler.stsmach(msbres);
m_assembler.cmplRegReg(msbres, scrsign, SH4Condition(Equal));
releaseScratch(msbres);
releaseScratch(scrsign);
return branchFalse();
}
mul32(src1, src2, dest);
if (cond == Signed) {
m_assembler.cmppz(dest);
return branchFalse();
}
compare32(0, dest, Equal);
return (cond == NonZero) ? branchFalse() : branchTrue();
}
Jump branchMul32(ResultCondition cond, RegisterID src, TrustedImm32 imm, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
if (src == dest) {
move(imm, scratchReg3);
return branchMul32(cond, scratchReg3, dest);
}
move(imm, dest);
return branchMul32(cond, src, dest);
}
Jump branchSub32(ResultCondition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
if (cond == Overflow) {
m_assembler.subvlRegReg(src, dest);
return branchTrue();
}
sub32(src, dest);
if (cond == Signed) {
m_assembler.cmppz(dest);
return branchFalse();
}
compare32(0, dest, static_cast<RelationalCondition>(cond));
return (cond == NonZero) ? branchFalse() : branchTrue();
}
Jump branchSub32(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
RegisterID immval = claimScratch();
move(imm, immval);
Jump result = branchSub32(cond, immval, dest);
releaseScratch(immval);
return result;
}
Jump branchSub32(ResultCondition cond, RegisterID src, TrustedImm32 imm, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
move(src, dest);
return branchSub32(cond, imm, dest);
}
Jump branchSub32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
if (src2 != dest) {
move(src1, dest);
return branchSub32(cond, src2, dest);
}
if (cond == Overflow) {
RegisterID tmpval = claimScratch();
move(src1, tmpval);
m_assembler.subvlRegReg(src2, tmpval);
move(tmpval, dest);
releaseScratch(tmpval);
return branchTrue();
}
RegisterID tmpval = claimScratch();
move(src1, tmpval);
sub32(src2, tmpval);
move(tmpval, dest);
releaseScratch(tmpval);
if (cond == Signed) {
m_assembler.cmppz(dest);
return branchFalse();
}
compare32(0, dest, static_cast<RelationalCondition>(cond));
return (cond == NonZero) ? branchFalse() : branchTrue();
}
Jump branchOr32(ResultCondition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Signed) || (cond == Zero) || (cond == NonZero));
or32(src, dest);
if (cond == Signed) {
m_assembler.cmppz(dest);
return branchFalse();
}
compare32(0, dest, static_cast<RelationalCondition>(cond));
return (cond == NonZero) ? branchFalse() : branchTrue();
}
void branchConvertDoubleToInt32(FPRegisterID src, RegisterID dest, JumpList& failureCases, FPRegisterID, bool negZeroCheck = true)
{
truncateDoubleToInt32(src, dest);
convertInt32ToDouble(dest, fscratch);
failureCases.append(branchDouble(DoubleNotEqualOrUnordered, fscratch, src));
if (negZeroCheck)
failureCases.append(branch32(Equal, dest, TrustedImm32(0)));
}
void neg32(RegisterID dst)
{
m_assembler.neg(dst, dst);
}
void urshift32(RegisterID shiftamount, RegisterID dest)
{
RegisterID shiftTmp = claimScratch();
m_assembler.loadConstant(0x1f, shiftTmp);
m_assembler.andlRegReg(shiftamount, shiftTmp);
m_assembler.neg(shiftTmp, shiftTmp);
m_assembler.shldRegReg(dest, shiftTmp);
releaseScratch(shiftTmp);
}
void urshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest)
{
move(src, dest);
urshift32(shiftAmount, dest);
}
void urshift32(TrustedImm32 imm, RegisterID dest)
{
int immMasked = imm.m_value & 0x1f;
if (!immMasked)
return;
if ((immMasked == 1) || (immMasked == 2) || (immMasked == 8) || (immMasked == 16)) {
m_assembler.shlrImm8r(immMasked, dest);
return;
}
RegisterID shiftTmp = claimScratch();
m_assembler.loadConstant(-immMasked, shiftTmp);
m_assembler.shldRegReg(dest, shiftTmp);
releaseScratch(shiftTmp);
}
void urshift32(RegisterID src, TrustedImm32 shiftamount, RegisterID dest)
{
move(src, dest);
urshift32(shiftamount, dest);
}
Call call()
{
return Call(m_assembler.call(), Call::Linkable);
}
Call nearTailCall()
{
return Call(m_assembler.jump(), Call::LinkableNearTail);
}
Call nearCall()
{
return Call(m_assembler.call(), Call::LinkableNear);
}
Call call(RegisterID target)
{
return Call(m_assembler.call(target), Call::None);
}
void call(Address address)
{
RegisterID target = claimScratch();
load32(address.base, address.offset, target);
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 2);
m_assembler.branch(JSR_OPCODE, target);
m_assembler.nop();
releaseScratch(target);
}
void breakpoint()
{
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 2);
m_assembler.bkpt();
m_assembler.nop();
}
Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
{
RegisterID dataTempRegister = claimScratch();
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 10, 2 * sizeof(uint32_t));
dataLabel = moveWithPatch(initialRightValue, dataTempRegister);
m_assembler.cmplRegReg(dataTempRegister, left, SH4Condition(cond));
releaseScratch(dataTempRegister);
if (cond == NotEqual)
return branchFalse();
return branchTrue();
}
Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0))
{
RegisterID scr = claimScratch();
m_assembler.loadConstant(left.offset, scr);
m_assembler.addlRegReg(left.base, scr);
m_assembler.movlMemReg(scr, scr);
RegisterID scr1 = claimScratch();
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 10, 2 * sizeof(uint32_t));
dataLabel = moveWithPatch(initialRightValue, scr1);
m_assembler.cmplRegReg(scr1, scr, SH4Condition(cond));
releaseScratch(scr);
releaseScratch(scr1);
if (cond == NotEqual)
return branchFalse();
return branchTrue();
}
Jump branch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0))
{
RegisterID scr = claimScratch();
m_assembler.loadConstant(left.offset, scr);
m_assembler.addlRegReg(left.base, scr);
m_assembler.movlMemReg(scr, scr);
RegisterID scr1 = claimScratch();
m_assembler.ensureSpace(m_assembler.maxInstructionSize + 10, 2 * sizeof(uint32_t));
dataLabel = moveWithPatch(initialRightValue, scr1);
m_assembler.cmplRegReg(scr1, scr, SH4Condition(cond));
releaseScratch(scr);
releaseScratch(scr1);
return (cond == NotEqual) ? branchFalse() : branchTrue();
}
void ret()
{
m_assembler.ret();
m_assembler.nop();
}
DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address)
{
RegisterID scr = claimScratch();
DataLabelPtr label = moveWithPatch(initialValue, scr);
store32(scr, address);
releaseScratch(scr);
return label;
}
DataLabelPtr storePtrWithPatch(ImplicitAddress address) { return storePtrWithPatch(TrustedImmPtr(0), address); }
int sizeOfConstantPool()
{
return m_assembler.sizeOfConstantPool();
}
Call tailRecursiveCall()
{
RegisterID scr = claimScratch();
m_assembler.loadConstantUnReusable(0x0, scr, true);
Jump m_jump = Jump(m_assembler.jmp(scr));
releaseScratch(scr);
return Call::fromTailJump(m_jump);
}
Call makeTailRecursiveCall(Jump oldJump)
{
oldJump.link(this);
return tailRecursiveCall();
}
void nop()
{
m_assembler.nop();
}
void memoryFence()
{
m_assembler.synco();
}
void abortWithReason(AbortReason reason)
{
move(TrustedImm32(reason), SH4Registers::r0);
breakpoint();
}
void abortWithReason(AbortReason reason, intptr_t misc)
{
move(TrustedImm32(misc), SH4Registers::r1);
abortWithReason(reason);
}
static FunctionPtr readCallTarget(CodeLocationCall call)
{
return FunctionPtr(reinterpret_cast<void(*)()>(SH4Assembler::readCallTarget(call.dataLocation())));
}
static void replaceWithJump(CodeLocationLabel instructionStart, CodeLocationLabel destination)
{
SH4Assembler::replaceWithJump(instructionStart.dataLocation(), destination.dataLocation());
}
static ptrdiff_t maxJumpReplacementSize()
{
return SH4Assembler::maxJumpReplacementSize();
}
static bool canJumpReplacePatchableBranchPtrWithPatch() { return false; }
static bool canJumpReplacePatchableBranch32WithPatch() { return false; }
static CodeLocationLabel startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr label)
{
return label.labelAtOffset(0);
}
static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel instructionStart, RegisterID rd, void* initialValue)
{
SH4Assembler::revertJumpReplacementToBranchPtrWithPatch(instructionStart.dataLocation(), rd, reinterpret_cast<int>(initialValue));
}
static CodeLocationLabel startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr)
{
UNREACHABLE_FOR_PLATFORM();
return CodeLocationLabel();
}
static CodeLocationLabel startOfPatchableBranch32WithPatchOnAddress(CodeLocationDataLabel32)
{
UNREACHABLE_FOR_PLATFORM();
return CodeLocationLabel();
}
static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel, Address, void*)
{
UNREACHABLE_FOR_PLATFORM();
}
static void revertJumpReplacementToPatchableBranch32WithPatch(CodeLocationLabel, Address, int32_t)
{
UNREACHABLE_FOR_PLATFORM();
}
protected:
SH4Assembler::Condition SH4Condition(RelationalCondition cond)
{
return static_cast<SH4Assembler::Condition>(cond);
}
SH4Assembler::Condition SH4Condition(ResultCondition cond)
{
return static_cast<SH4Assembler::Condition>(cond);
}
private:
friend class LinkBuffer;
static void linkCall(void* code, Call call, FunctionPtr function)
{
if (call.isFlagSet(Call::Tail))
SH4Assembler::linkJump(code, call.m_label, function.value());
else
SH4Assembler::linkCall(code, call.m_label, function.value());
}
static void repatchCall(CodeLocationCall call, CodeLocationLabel destination)
{
SH4Assembler::relinkCall(call.dataLocation(), destination.executableAddress());
}
static void repatchCall(CodeLocationCall call, FunctionPtr destination)
{
SH4Assembler::relinkCall(call.dataLocation(), destination.executableAddress());
}
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER)