blob: 6fd8ae6ac5598fb9c76199196166c5341580e179 [file] [log] [blame]
/*
* Copyright (C) 2014-2017 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(DFG_JIT)
#include "DFGClobberize.h"
#include "DFGMayExit.h"
namespace JSC { namespace DFG {
template<typename ReadFunctor, typename WriteFunctor, typename DefFunctor>
class PreciseLocalClobberizeAdaptor {
public:
PreciseLocalClobberizeAdaptor(
Graph& graph, Node* node,
const ReadFunctor& read, const WriteFunctor& write, const DefFunctor& def)
: m_graph(graph)
, m_node(node)
, m_read(read)
, m_unconditionalWrite(write)
, m_def(def)
{
}
void read(AbstractHeap heap)
{
if (heap.kind() == Stack) {
if (heap.payload().isTop()) {
readTop();
return;
}
callIfAppropriate(m_read, VirtualRegister(heap.payload().value32()));
return;
}
if (heap.overlaps(Stack)) {
readTop();
return;
}
}
void write(AbstractHeap heap)
{
// We expect stack writes to already be precisely characterized by DFG::clobberize().
if (heap.kind() == Stack) {
RELEASE_ASSERT(!heap.payload().isTop());
callIfAppropriate(m_unconditionalWrite, VirtualRegister(heap.payload().value32()));
return;
}
RELEASE_ASSERT(!heap.overlaps(Stack));
}
void def(PureValue)
{
// PureValue defs never have anything to do with locals, so ignore this.
}
void def(HeapLocation location, LazyNode node)
{
if (location.kind() != StackLoc)
return;
RELEASE_ASSERT(location.heap().kind() == Stack);
m_def(VirtualRegister(location.heap().payload().value32()), node);
}
private:
template<typename Functor>
void callIfAppropriate(const Functor& functor, VirtualRegister operand)
{
if (operand.isLocal() && static_cast<unsigned>(operand.toLocal()) >= m_graph.block(0)->variablesAtHead.numberOfLocals())
return;
if (operand.isArgument() && !operand.isHeader() && static_cast<unsigned>(operand.toArgument()) >= m_graph.block(0)->variablesAtHead.numberOfArguments())
return;
functor(operand);
}
void readTop()
{
auto readFrame = [&] (InlineCallFrame* inlineCallFrame, unsigned numberOfArgumentsToSkip) {
if (!inlineCallFrame) {
// Read the outermost arguments and argument count.
for (unsigned i = 1 + numberOfArgumentsToSkip; i < static_cast<unsigned>(m_graph.m_codeBlock->numParameters()); i++)
m_read(virtualRegisterForArgument(i));
m_read(VirtualRegister(CallFrameSlot::argumentCount));
return;
}
for (unsigned i = 1 + numberOfArgumentsToSkip; i < inlineCallFrame->arguments.size(); i++)
m_read(VirtualRegister(inlineCallFrame->stackOffset + virtualRegisterForArgument(i).offset()));
if (inlineCallFrame->isVarargs())
m_read(VirtualRegister(inlineCallFrame->stackOffset + CallFrameSlot::argumentCount));
};
auto readNewArrayWithSpreadNode = [&] (Node* arrayWithSpread) {
ASSERT(arrayWithSpread->op() == NewArrayWithSpread || arrayWithSpread->op() == PhantomNewArrayWithSpread);
BitVector* bitVector = arrayWithSpread->bitVector();
for (unsigned i = 0; i < arrayWithSpread->numChildren(); i++) {
if (bitVector->get(i)) {
Node* child = m_graph.varArgChild(arrayWithSpread, i).node();
if (child->op() == PhantomSpread) {
ASSERT(child->child1()->op() == PhantomCreateRest);
InlineCallFrame* inlineCallFrame = child->child1()->origin.semantic.inlineCallFrame;
unsigned numberOfArgumentsToSkip = child->child1()->numberOfArgumentsToSkip();
readFrame(inlineCallFrame, numberOfArgumentsToSkip);
}
}
}
};
switch (m_node->op()) {
case ForwardVarargs:
case CallForwardVarargs:
case ConstructForwardVarargs:
case TailCallForwardVarargs:
case TailCallForwardVarargsInlinedCaller:
case GetMyArgumentByVal:
case GetMyArgumentByValOutOfBounds:
case CreateDirectArguments:
case CreateScopedArguments:
case CreateClonedArguments:
case PhantomDirectArguments:
case PhantomClonedArguments:
case GetRestLength:
case CreateRest: {
bool isForwardingNode = false;
bool isPhantomNode = false;
switch (m_node->op()) {
case ForwardVarargs:
case CallForwardVarargs:
case ConstructForwardVarargs:
case TailCallForwardVarargs:
case TailCallForwardVarargsInlinedCaller:
isForwardingNode = true;
break;
case PhantomDirectArguments:
case PhantomClonedArguments:
isPhantomNode = true;
break;
default:
break;
}
if (isPhantomNode && isFTL(m_graph.m_plan.mode))
break;
if (isForwardingNode && m_node->hasArgumentsChild() && m_node->argumentsChild() && m_node->argumentsChild()->op() == PhantomNewArrayWithSpread) {
Node* arrayWithSpread = m_node->argumentsChild().node();
readNewArrayWithSpreadNode(arrayWithSpread);
} else {
InlineCallFrame* inlineCallFrame;
if (m_node->hasArgumentsChild() && m_node->argumentsChild())
inlineCallFrame = m_node->argumentsChild()->origin.semantic.inlineCallFrame;
else
inlineCallFrame = m_node->origin.semantic.inlineCallFrame;
unsigned numberOfArgumentsToSkip = 0;
if (m_node->op() == GetMyArgumentByVal || m_node->op() == GetMyArgumentByValOutOfBounds) {
// The value of numberOfArgumentsToSkip guarantees that GetMyArgumentByVal* will never
// read any arguments below the number of arguments to skip. For example, if numberOfArgumentsToSkip is 2,
// we will never read argument 0 or argument 1.
numberOfArgumentsToSkip = m_node->numberOfArgumentsToSkip();
}
readFrame(inlineCallFrame, numberOfArgumentsToSkip);
}
break;
}
case NewArrayWithSpread: {
readNewArrayWithSpreadNode(m_node);
break;
}
case GetArgument: {
InlineCallFrame* inlineCallFrame = m_node->origin.semantic.inlineCallFrame;
unsigned indexIncludingThis = m_node->argumentIndex();
if (!inlineCallFrame) {
if (indexIncludingThis < static_cast<unsigned>(m_graph.m_codeBlock->numParameters()))
m_read(virtualRegisterForArgument(indexIncludingThis));
m_read(VirtualRegister(CallFrameSlot::argumentCount));
break;
}
ASSERT_WITH_MESSAGE(inlineCallFrame->isVarargs(), "GetArgument is only used for InlineCallFrame if the call frame is varargs.");
if (indexIncludingThis < inlineCallFrame->arguments.size())
m_read(VirtualRegister(inlineCallFrame->stackOffset + virtualRegisterForArgument(indexIncludingThis).offset()));
m_read(VirtualRegister(inlineCallFrame->stackOffset + CallFrameSlot::argumentCount));
break;
}
default: {
// All of the outermost arguments, except this, are read in sloppy mode.
if (!m_graph.m_codeBlock->isStrictMode()) {
for (unsigned i = m_graph.m_codeBlock->numParameters(); i-- > 1;)
m_read(virtualRegisterForArgument(i));
}
// The stack header is read.
for (unsigned i = 0; i < CallFrameSlot::thisArgument; ++i)
m_read(VirtualRegister(i));
// Read all of the inline arguments and call frame headers that we didn't already capture.
for (InlineCallFrame* inlineCallFrame = m_node->origin.semantic.inlineCallFrame; inlineCallFrame; inlineCallFrame = inlineCallFrame->getCallerInlineFrameSkippingTailCalls()) {
if (!inlineCallFrame->isStrictMode()) {
for (unsigned i = inlineCallFrame->arguments.size(); i-- > 1;)
m_read(VirtualRegister(inlineCallFrame->stackOffset + virtualRegisterForArgument(i).offset()));
}
if (inlineCallFrame->isClosureCall)
m_read(VirtualRegister(inlineCallFrame->stackOffset + CallFrameSlot::callee));
if (inlineCallFrame->isVarargs())
m_read(VirtualRegister(inlineCallFrame->stackOffset + CallFrameSlot::argumentCount));
}
break;
} }
}
Graph& m_graph;
Node* m_node;
const ReadFunctor& m_read;
const WriteFunctor& m_unconditionalWrite;
const DefFunctor& m_def;
};
template<typename ReadFunctor, typename WriteFunctor, typename DefFunctor>
void preciseLocalClobberize(
Graph& graph, Node* node,
const ReadFunctor& read, const WriteFunctor& write, const DefFunctor& def)
{
PreciseLocalClobberizeAdaptor<ReadFunctor, WriteFunctor, DefFunctor>
adaptor(graph, node, read, write, def);
clobberize(graph, node, adaptor);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)