blob: d349bd49594259bb1582b9e5068cdcfcc36041f1 [file] [log] [blame]
use internals::ast::{Container, Data, Field, Style};
use internals::attr::{Identifier, TagType};
use internals::{Ctxt, Derive};
use syn::{Member, Type};
/// Cross-cutting checks that require looking at more than a single attrs
/// object. Simpler checks should happen when parsing and building the attrs.
pub fn check(cx: &Ctxt, cont: &mut Container, derive: Derive) {
check_getter(cx, cont);
check_flatten(cx, cont);
check_identifier(cx, cont);
check_variant_skip_attrs(cx, cont);
check_internal_tag_field_name_conflict(cx, cont);
check_adjacent_tag_conflict(cx, cont);
check_transparent(cx, cont, derive);
}
/// Getters are only allowed inside structs (not enums) with the `remote`
/// attribute.
fn check_getter(cx: &Ctxt, cont: &Container) {
match cont.data {
Data::Enum(_) => {
if cont.data.has_getter() {
cx.error_spanned_by(
cont.original,
"#[serde(getter = \"...\")] is not allowed in an enum",
);
}
}
Data::Struct(_, _) => {
if cont.data.has_getter() && cont.attrs.remote().is_none() {
cx.error_spanned_by(
cont.original,
"#[serde(getter = \"...\")] can only be used in structs \
that have #[serde(remote = \"...\")]",
);
}
}
}
}
/// Flattening has some restrictions we can test.
fn check_flatten(cx: &Ctxt, cont: &Container) {
match cont.data {
Data::Enum(ref variants) => {
for variant in variants {
for field in &variant.fields {
check_flatten_field(cx, variant.style, field);
}
}
}
Data::Struct(style, ref fields) => {
for field in fields {
check_flatten_field(cx, style, field);
}
}
}
}
fn check_flatten_field(cx: &Ctxt, style: Style, field: &Field) {
if !field.attrs.flatten() {
return;
}
match style {
Style::Tuple => {
cx.error_spanned_by(
field.original,
"#[serde(flatten)] cannot be used on tuple structs",
);
}
Style::Newtype => {
cx.error_spanned_by(
field.original,
"#[serde(flatten)] cannot be used on newtype structs",
);
}
_ => {}
}
if field.attrs.skip_serializing() {
cx.error_spanned_by(
field.original,
"#[serde(flatten)] can not be combined with \
#[serde(skip_serializing)]",
);
} else if field.attrs.skip_serializing_if().is_some() {
cx.error_spanned_by(
field.original,
"#[serde(flatten)] can not be combined with \
#[serde(skip_serializing_if = \"...\")]",
);
} else if field.attrs.skip_deserializing() {
cx.error_spanned_by(
field.original,
"#[serde(flatten)] can not be combined with \
#[serde(skip_deserializing)]",
);
}
}
/// The `other` attribute must be used at most once and it must be the last
/// variant of an enum.
///
/// Inside a `variant_identifier` all variants must be unit variants. Inside a
/// `field_identifier` all but possibly one variant must be unit variants. The
/// last variant may be a newtype variant which is an implicit "other" case.
fn check_identifier(cx: &Ctxt, cont: &Container) {
let variants = match cont.data {
Data::Enum(ref variants) => variants,
Data::Struct(_, _) => {
return;
}
};
for (i, variant) in variants.iter().enumerate() {
match (
variant.style,
cont.attrs.identifier(),
variant.attrs.other(),
cont.attrs.tag(),
) {
// The `other` attribute may not be used in a variant_identifier.
(_, Identifier::Variant, true, _) => {
cx.error_spanned_by(
variant.original,
"#[serde(other)] may not be used on a variant identifier",
);
}
// Variant with `other` attribute cannot appear in untagged enum
(_, Identifier::No, true, &TagType::None) => {
cx.error_spanned_by(
variant.original,
"#[serde(other)] cannot appear on untagged enum",
);
}
// Variant with `other` attribute must be the last one.
(Style::Unit, Identifier::Field, true, _) | (Style::Unit, Identifier::No, true, _) => {
if i < variants.len() - 1 {
cx.error_spanned_by(
variant.original,
"#[serde(other)] must be on the last variant",
);
}
}
// Variant with `other` attribute must be a unit variant.
(_, Identifier::Field, true, _) | (_, Identifier::No, true, _) => {
cx.error_spanned_by(
variant.original,
"#[serde(other)] must be on a unit variant",
);
}
// Any sort of variant is allowed if this is not an identifier.
(_, Identifier::No, false, _) => {}
// Unit variant without `other` attribute is always fine.
(Style::Unit, _, false, _) => {}
// The last field is allowed to be a newtype catch-all.
(Style::Newtype, Identifier::Field, false, _) => {
if i < variants.len() - 1 {
cx.error_spanned_by(
variant.original,
format!("`{}` must be the last variant", variant.ident),
);
}
}
(_, Identifier::Field, false, _) => {
cx.error_spanned_by(
variant.original,
"#[serde(field_identifier)] may only contain unit variants",
);
}
(_, Identifier::Variant, false, _) => {
cx.error_spanned_by(
variant.original,
"#[serde(variant_identifier)] may only contain unit variants",
);
}
}
}
}
/// Skip-(de)serializing attributes are not allowed on variants marked
/// (de)serialize_with.
fn check_variant_skip_attrs(cx: &Ctxt, cont: &Container) {
let variants = match cont.data {
Data::Enum(ref variants) => variants,
Data::Struct(_, _) => {
return;
}
};
for variant in variants.iter() {
if variant.attrs.serialize_with().is_some() {
if variant.attrs.skip_serializing() {
cx.error_spanned_by(
variant.original,
format!(
"variant `{}` cannot have both #[serde(serialize_with)] and \
#[serde(skip_serializing)]",
variant.ident
),
);
}
for field in &variant.fields {
let member = member_message(&field.member);
if field.attrs.skip_serializing() {
cx.error_spanned_by(
variant.original,
format!(
"variant `{}` cannot have both #[serde(serialize_with)] and \
a field {} marked with #[serde(skip_serializing)]",
variant.ident, member
),
);
}
if field.attrs.skip_serializing_if().is_some() {
cx.error_spanned_by(
variant.original,
format!(
"variant `{}` cannot have both #[serde(serialize_with)] and \
a field {} marked with #[serde(skip_serializing_if)]",
variant.ident, member
),
);
}
}
}
if variant.attrs.deserialize_with().is_some() {
if variant.attrs.skip_deserializing() {
cx.error_spanned_by(
variant.original,
format!(
"variant `{}` cannot have both #[serde(deserialize_with)] and \
#[serde(skip_deserializing)]",
variant.ident
),
);
}
for field in &variant.fields {
if field.attrs.skip_deserializing() {
let member = member_message(&field.member);
cx.error_spanned_by(
variant.original,
format!(
"variant `{}` cannot have both #[serde(deserialize_with)] \
and a field {} marked with #[serde(skip_deserializing)]",
variant.ident, member
),
);
}
}
}
}
}
/// The tag of an internally-tagged struct variant must not be
/// the same as either one of its fields, as this would result in
/// duplicate keys in the serialized output and/or ambiguity in
/// the to-be-deserialized input.
fn check_internal_tag_field_name_conflict(cx: &Ctxt, cont: &Container) {
let variants = match cont.data {
Data::Enum(ref variants) => variants,
Data::Struct(_, _) => return,
};
let tag = match *cont.attrs.tag() {
TagType::Internal { ref tag } => tag.as_str(),
TagType::External | TagType::Adjacent { .. } | TagType::None => return,
};
let diagnose_conflict = || {
cx.error_spanned_by(
cont.original,
format!("variant field name `{}` conflicts with internal tag", tag),
)
};
for variant in variants {
match variant.style {
Style::Struct => {
for field in &variant.fields {
let check_ser = !field.attrs.skip_serializing();
let check_de = !field.attrs.skip_deserializing();
let name = field.attrs.name();
let ser_name = name.serialize_name();
let de_name = name.deserialize_name();
if check_ser && ser_name == tag || check_de && de_name == tag {
diagnose_conflict();
return;
}
}
}
Style::Unit | Style::Newtype | Style::Tuple => {}
}
}
}
/// In the case of adjacently-tagged enums, the type and the
/// contents tag must differ, for the same reason.
fn check_adjacent_tag_conflict(cx: &Ctxt, cont: &Container) {
let (type_tag, content_tag) = match *cont.attrs.tag() {
TagType::Adjacent {
ref tag,
ref content,
} => (tag, content),
TagType::Internal { .. } | TagType::External | TagType::None => return,
};
if type_tag == content_tag {
cx.error_spanned_by(
cont.original,
format!(
"enum tags `{}` for type and content conflict with each other",
type_tag
),
);
}
}
/// Enums and unit structs cannot be transparent.
fn check_transparent(cx: &Ctxt, cont: &mut Container, derive: Derive) {
if !cont.attrs.transparent() {
return;
}
if cont.attrs.type_from().is_some() {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] is not allowed with #[serde(from = \"...\")]",
);
}
if cont.attrs.type_into().is_some() {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] is not allowed with #[serde(into = \"...\")]",
);
}
let fields = match cont.data {
Data::Enum(_) => {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] is not allowed on an enum",
);
return;
}
Data::Struct(Style::Unit, _) => {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] is not allowed on a unit struct",
);
return;
}
Data::Struct(_, ref mut fields) => fields,
};
let mut transparent_field = None;
for field in fields {
if allow_transparent(field, derive) {
if transparent_field.is_some() {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] requires struct to have at most one transparent field",
);
return;
}
transparent_field = Some(field);
}
}
match transparent_field {
Some(transparent_field) => transparent_field.attrs.mark_transparent(),
None => match derive {
Derive::Serialize => {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] requires at least one field that is not skipped",
);
}
Derive::Deserialize => {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] requires at least one field that is neither skipped nor has a default",
);
}
},
}
}
fn member_message(member: &Member) -> String {
match *member {
Member::Named(ref ident) => format!("`{}`", ident),
Member::Unnamed(ref i) => format!("#{}", i.index),
}
}
fn allow_transparent(field: &Field, derive: Derive) -> bool {
if let Type::Path(ref ty) = *field.ty {
if let Some(seg) = ty.path.segments.last() {
if seg.into_value().ident == "PhantomData" {
return false;
}
}
}
match derive {
Derive::Serialize => !field.attrs.skip_serializing(),
Derive::Deserialize => !field.attrs.skip_deserializing() && field.attrs.default().is_none(),
}
}