blob: 077b9c434299dfdddda31f4e2465d85099f1a830 [file] [log] [blame]
// Copyright 2014 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @fileoverview Base class for the 64-bit SHA-2 cryptographic hashes.
*
* Variable names follow the notation in FIPS PUB 180-3:
* http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf.
*
* This code borrows heavily from the 32-bit SHA2 implementation written by
* Yue Zhang (zysxqn@).
*
* @author fy@google.com (Frank Yellin)
*/
goog.provide('goog.crypt.Sha2_64bit');
goog.require('goog.array');
goog.require('goog.asserts');
goog.require('goog.crypt.Hash');
goog.require('goog.math.Long');
/**
* Constructs a SHA-2 64-bit cryptographic hash.
* This class should not be used. Rather, one should use one of its
* subclasses.
* @constructor
* @param {number} numHashBlocks The size of the output in 16-byte blocks
* @param {!Array<number>} initHashBlocks The hash-specific initialization
* vector, as a sequence of sixteen 32-bit numbers.
* @extends {goog.crypt.Hash}
* @struct
*/
goog.crypt.Sha2_64bit = function(numHashBlocks, initHashBlocks) {
goog.crypt.Sha2_64bit.base(this, 'constructor');
/**
* The number of bytes that are digested in each pass of this hasher.
* @const {number}
*/
this.blockSize = goog.crypt.Sha2_64bit.BLOCK_SIZE_;
/**
* A chunk holding the currently processed message bytes. Once the chunk has
* {@code this.blocksize} bytes, we feed it into [@code computeChunk_}.
* @private {!Uint8Array|!Array<number>}
*/
this.chunk_ = goog.isDef(goog.global.Uint8Array) ?
new Uint8Array(goog.crypt.Sha2_64bit.BLOCK_SIZE_) :
new Array(goog.crypt.Sha2_64bit.BLOCK_SIZE_);
/**
* Current number of bytes in {@code this.chunk_}.
* @private {number}
*/
this.chunkBytes_ = 0;
/**
* Total number of bytes in currently processed message.
* @private {number}
*/
this.total_ = 0;
/**
* Holds the previous values of accumulated hash a-h in the
* {@code computeChunk_} function.
* @private {!Array<!goog.math.Long>}
*/
this.hash_ = [];
/**
* The number of blocks of output produced by this hash function, where each
* block is eight bytes long.
* @private {number}
*/
this.numHashBlocks_ = numHashBlocks;
/**
* Temporary array used in chunk computation. Allocate here as a
* member rather than as a local within computeChunk_() as a
* performance optimization to reduce the number of allocations and
* reduce garbage collection.
* @type {!Array<!goog.math.Long>}
* @private
*/
this.w_ = [];
/**
* The value to which {@code this.hash_} should be reset when this
* Hasher is reset.
* @private @const {!Array<!goog.math.Long>}
*/
this.initHashBlocks_ = goog.crypt.Sha2_64bit.toLongArray_(initHashBlocks);
/**
* If true, we have taken the digest from this hasher, but we have not
* yet reset it.
*
* @private {boolean}
*/
this.needsReset_ = false;
this.reset();
};
goog.inherits(goog.crypt.Sha2_64bit, goog.crypt.Hash);
/**
* The number of bytes that are digested in each pass of this hasher.
* @private @const {number}
*/
goog.crypt.Sha2_64bit.BLOCK_SIZE_ = 1024 / 8;
/**
* Contains data needed to pad messages less than {@code blocksize} bytes.
* @private {!Array<number>}
*/
goog.crypt.Sha2_64bit.PADDING_ = goog.array.concat(
[0x80], goog.array.repeat(0, goog.crypt.Sha2_64bit.BLOCK_SIZE_ - 1));
/**
* Resets this hash function.
* @override
*/
goog.crypt.Sha2_64bit.prototype.reset = function() {
this.chunkBytes_ = 0;
this.total_ = 0;
this.hash_ = goog.array.clone(this.initHashBlocks_);
this.needsReset_ = false;
};
/** @override */
goog.crypt.Sha2_64bit.prototype.update = function(message, opt_length) {
var length = goog.isDef(opt_length) ? opt_length : message.length;
// Make sure this hasher is usable.
if (this.needsReset_) {
throw Error('this hasher needs to be reset');
}
// Process the message from left to right up to |length| bytes.
// When we get a 512-bit chunk, compute the hash of it and reset
// this.chunk_. The message might not be multiple of 512 bits so we
// might end up with a chunk that is less than 512 bits. We store
// such partial chunk in chunk_ and it will be filled up later
// in digest().
var chunkBytes = this.chunkBytes_;
// The input message could be either byte array or string.
if (goog.isString(message)) {
for (var i = 0; i < length; i++) {
var b = message.charCodeAt(i);
if (b > 255) {
throw Error('Characters must be in range [0,255]');
}
this.chunk_[chunkBytes++] = b;
if (chunkBytes == this.blockSize) {
this.computeChunk_();
chunkBytes = 0;
}
}
} else if (goog.isArray(message)) {
for (var i = 0; i < length; i++) {
var b = message[i];
// Hack: b|0 coerces b to an integer, so the last part confirms that
// b has no fractional part.
if (!goog.isNumber(b) || b < 0 || b > 255 || b != (b | 0)) {
throw Error('message must be a byte array');
}
this.chunk_[chunkBytes++] = b;
if (chunkBytes == this.blockSize) {
this.computeChunk_();
chunkBytes = 0;
}
}
} else {
throw Error('message must be string or array');
}
// Record the current bytes in chunk to support partial update.
this.chunkBytes_ = chunkBytes;
// Record total message bytes we have processed so far.
this.total_ += length;
};
/** @override */
goog.crypt.Sha2_64bit.prototype.digest = function() {
if (this.needsReset_) {
throw Error('this hasher needs to be reset');
}
var totalBits = this.total_ * 8;
// Append pad 0x80 0x00* until this.chunkBytes_ == 112
if (this.chunkBytes_ < 112) {
this.update(goog.crypt.Sha2_64bit.PADDING_, 112 - this.chunkBytes_);
} else {
// the rest of this block, plus 112 bytes of next block
this.update(goog.crypt.Sha2_64bit.PADDING_,
this.blockSize - this.chunkBytes_ + 112);
}
// Append # bits in the 64-bit big-endian format.
for (var i = 127; i >= 112; i--) {
this.chunk_[i] = totalBits & 255;
totalBits /= 256; // Don't use bit-shifting here!
}
this.computeChunk_();
// Finally, output the result digest.
var n = 0;
var digest = new Array(8 * this.numHashBlocks_);
for (var i = 0; i < this.numHashBlocks_; i++) {
var block = this.hash_[i];
var high = block.getHighBits();
var low = block.getLowBits();
for (var j = 24; j >= 0; j -= 8) {
digest[n++] = ((high >> j) & 255);
}
for (var j = 24; j >= 0; j -= 8) {
digest[n++] = ((low >> j) & 255);
}
}
// The next call to this hasher must be a reset
this.needsReset_ = true;
return digest;
};
/**
* Updates this hash by processing the 1024-bit message chunk in this.chunk_.
* @private
*/
goog.crypt.Sha2_64bit.prototype.computeChunk_ = function() {
var chunk = this.chunk_;
var K_ = goog.crypt.Sha2_64bit.K_;
// Divide the chunk into 16 64-bit-words.
var w = this.w_;
for (var i = 0; i < 16; i++) {
var offset = i * 8;
w[i] = new goog.math.Long(
(chunk[offset + 4] << 24) | (chunk[offset + 5] << 16) |
(chunk[offset + 6] << 8) | (chunk[offset + 7]),
(chunk[offset] << 24) | (chunk[offset + 1] << 16) |
(chunk[offset + 2] << 8) | (chunk[offset + 3]));
}
// Extend the w[] array to be the number of rounds.
for (var i = 16; i < 80; i++) {
var s0 = this.sigma0_(w[i - 15]);
var s1 = this.sigma1_(w[i - 2]);
w[i] = this.sum_(w[i - 16], w[i - 7], s0, s1);
}
var a = this.hash_[0];
var b = this.hash_[1];
var c = this.hash_[2];
var d = this.hash_[3];
var e = this.hash_[4];
var f = this.hash_[5];
var g = this.hash_[6];
var h = this.hash_[7];
for (var i = 0; i < 80; i++) {
var S0 = this.Sigma0_(a);
var maj = this.majority_(a, b, c);
var t2 = S0.add(maj);
var S1 = this.Sigma1_(e);
var ch = this.choose_(e, f, g);
var t1 = this.sum_(h, S1, ch, K_[i], w[i]);
h = g;
g = f;
f = e;
e = d.add(t1);
d = c;
c = b;
b = a;
a = t1.add(t2);
}
this.hash_[0] = this.hash_[0].add(a);
this.hash_[1] = this.hash_[1].add(b);
this.hash_[2] = this.hash_[2].add(c);
this.hash_[3] = this.hash_[3].add(d);
this.hash_[4] = this.hash_[4].add(e);
this.hash_[5] = this.hash_[5].add(f);
this.hash_[6] = this.hash_[6].add(g);
this.hash_[7] = this.hash_[7].add(h);
};
/**
* Calculates the SHA2 64-bit sigma0 function.
* rotateRight(value, 1) ^ rotateRight(value, 8) ^ (value >>> 7)
*
* @private
* @param {!goog.math.Long} value
* @return {!goog.math.Long}
*/
goog.crypt.Sha2_64bit.prototype.sigma0_ = function(value) {
var valueLow = value.getLowBits();
var valueHigh = value.getHighBits();
// Implementation note: We purposely do not use the shift operations defined
// in goog.math.Long. Inlining the code for specific values of shifting and
// not generating the intermediate results doubles the speed of this code.
var low = (valueLow >>> 1) ^ (valueHigh << 31) ^
(valueLow >>> 8) ^ (valueHigh << 24) ^
(valueLow >>> 7) ^ (valueHigh << 25);
var high = (valueHigh >>> 1) ^ (valueLow << 31) ^
(valueHigh >>> 8) ^ (valueLow << 24) ^
(valueHigh >>> 7);
return new goog.math.Long(low, high);
};
/**
* Calculates the SHA2 64-bit sigma1 function.
* rotateRight(value, 19) ^ rotateRight(value, 61) ^ (value >>> 6)
*
* @private
* @param {!goog.math.Long} value
* @return {!goog.math.Long}
*/
goog.crypt.Sha2_64bit.prototype.sigma1_ = function(value) {
var valueLow = value.getLowBits();
var valueHigh = value.getHighBits();
// Implementation note: See _sigma0() above
var low = (valueLow >>> 19) ^ (valueHigh << 13) ^
(valueHigh >>> 29) ^ (valueLow << 3) ^
(valueLow >>> 6) ^ (valueHigh << 26);
var high = (valueHigh >>> 19) ^ (valueLow << 13) ^
(valueLow >>> 29) ^ (valueHigh << 3) ^
(valueHigh >>> 6);
return new goog.math.Long(low, high);
};
/**
* Calculates the SHA2 64-bit Sigma0 function.
* rotateRight(value, 28) ^ rotateRight(value, 34) ^ rotateRight(value, 39)
*
* @private
* @param {!goog.math.Long} value
* @return {!goog.math.Long}
*/
goog.crypt.Sha2_64bit.prototype.Sigma0_ = function(value) {
var valueLow = value.getLowBits();
var valueHigh = value.getHighBits();
// Implementation note: See _sigma0() above
var low = (valueLow >>> 28) ^ (valueHigh << 4) ^
(valueHigh >>> 2) ^ (valueLow << 30) ^
(valueHigh >>> 7) ^ (valueLow << 25);
var high = (valueHigh >>> 28) ^ (valueLow << 4) ^
(valueLow >>> 2) ^ (valueHigh << 30) ^
(valueLow >>> 7) ^ (valueHigh << 25);
return new goog.math.Long(low, high);
};
/**
* Calculates the SHA2 64-bit Sigma1 function.
* rotateRight(value, 14) ^ rotateRight(value, 18) ^ rotateRight(value, 41)
*
* @private
* @param {!goog.math.Long} value
* @return {!goog.math.Long}
*/
goog.crypt.Sha2_64bit.prototype.Sigma1_ = function(value) {
var valueLow = value.getLowBits();
var valueHigh = value.getHighBits();
// Implementation note: See _sigma0() above
var low = (valueLow >>> 14) ^ (valueHigh << 18) ^
(valueLow >>> 18) ^ (valueHigh << 14) ^
(valueHigh >>> 9) ^ (valueLow << 23);
var high = (valueHigh >>> 14) ^ (valueLow << 18) ^
(valueHigh >>> 18) ^ (valueLow << 14) ^
(valueLow >>> 9) ^ (valueHigh << 23);
return new goog.math.Long(low, high);
};
/**
* Calculates the SHA-2 64-bit choose function.
*
* This function uses {@code value} as a mask to choose bits from either
* {@code one} if the bit is set or {@code two} if the bit is not set.
*
* @private
* @param {!goog.math.Long} value
* @param {!goog.math.Long} one
* @param {!goog.math.Long} two
* @return {!goog.math.Long}
*/
goog.crypt.Sha2_64bit.prototype.choose_ = function(value, one, two) {
var valueLow = value.getLowBits();
var valueHigh = value.getHighBits();
return new goog.math.Long(
(valueLow & one.getLowBits()) | (~valueLow & two.getLowBits()),
(valueHigh & one.getHighBits()) | (~valueHigh & two.getHighBits()));
};
/**
* Calculates the SHA-2 64-bit majority function.
* This function returns, for each bit position, the bit held by the majority
* of its three arguments.
*
* @private
* @param {!goog.math.Long} one
* @param {!goog.math.Long} two
* @param {!goog.math.Long} three
* @return {!goog.math.Long}
*/
goog.crypt.Sha2_64bit.prototype.majority_ = function(one, two, three) {
return new goog.math.Long(
(one.getLowBits() & two.getLowBits()) |
(two.getLowBits() & three.getLowBits()) |
(one.getLowBits() & three.getLowBits()),
(one.getHighBits() & two.getHighBits()) |
(two.getHighBits() & three.getHighBits()) |
(one.getHighBits() & three.getHighBits()));
};
/**
* Adds two or more goog.math.Long values.
*
* @private
* @param {!goog.math.Long} one first summand
* @param {!goog.math.Long} two second summand
* @param {...goog.math.Long} var_args more arguments to sum
* @return {!goog.math.Long} The resulting sum.
*/
goog.crypt.Sha2_64bit.prototype.sum_ = function(one, two, var_args) {
// The low bits may be signed, but they represent a 32-bit unsigned quantity.
// We must be careful to normalize them.
// This doesn't matter for the high bits.
// Implementation note: Performance testing shows that this method runs
// fastest when the first two arguments are pulled out of the loop.
var low = (one.getLowBits() ^ 0x80000000) + (two.getLowBits() ^ 0x80000000);
var high = one.getHighBits() + two.getHighBits();
for (var i = arguments.length - 1; i >= 2; --i) {
low += arguments[i].getLowBits() ^ 0x80000000;
high += arguments[i].getHighBits();
}
// Because of the ^0x80000000, each value we added is 0x80000000 too small.
// Add arguments.length * 0x80000000 to the current sum. We can do this
// quickly by adding 0x80000000 to low when the number of arguments is
// odd, and adding (number of arguments) >> 1 to high.
if (arguments.length & 1) {
low += 0x80000000;
}
high += arguments.length >> 1;
// If low is outside the range [0, 0xFFFFFFFF], its overflow or underflow
// should be added to high. We don't actually need to modify low or
// normalize high because the goog.math.Long constructor already does that.
high += Math.floor(low / 0x100000000);
return new goog.math.Long(low, high);
};
/**
* Converts an array of 32-bit integers into an array of goog.math.Long
* elements.
*
* @private
* @param {!Array<number>} values An array of 32-bit numbers. Its length
* must be even. Each pair of numbers represents a 64-bit integer
* in big-endian order
* @return {!Array<!goog.math.Long>}
*/
goog.crypt.Sha2_64bit.toLongArray_ = function(values) {
goog.asserts.assert(values.length % 2 == 0);
var result = [];
for (var i = 0; i < values.length; i += 2) {
result.push(new goog.math.Long(values[i + 1], values[i]));
}
return result;
};
/**
* Fixed constants used in SHA-512 variants.
*
* These values are from Section 4.2.3 of
* http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
* @const
* @private {!Array<!goog.math.Long>}
*/
goog.crypt.Sha2_64bit.K_ = goog.crypt.Sha2_64bit.toLongArray_([
0x428a2f98, 0xd728ae22, 0x71374491, 0x23ef65cd,
0xb5c0fbcf, 0xec4d3b2f, 0xe9b5dba5, 0x8189dbbc,
0x3956c25b, 0xf348b538, 0x59f111f1, 0xb605d019,
0x923f82a4, 0xaf194f9b, 0xab1c5ed5, 0xda6d8118,
0xd807aa98, 0xa3030242, 0x12835b01, 0x45706fbe,
0x243185be, 0x4ee4b28c, 0x550c7dc3, 0xd5ffb4e2,
0x72be5d74, 0xf27b896f, 0x80deb1fe, 0x3b1696b1,
0x9bdc06a7, 0x25c71235, 0xc19bf174, 0xcf692694,
0xe49b69c1, 0x9ef14ad2, 0xefbe4786, 0x384f25e3,
0x0fc19dc6, 0x8b8cd5b5, 0x240ca1cc, 0x77ac9c65,
0x2de92c6f, 0x592b0275, 0x4a7484aa, 0x6ea6e483,
0x5cb0a9dc, 0xbd41fbd4, 0x76f988da, 0x831153b5,
0x983e5152, 0xee66dfab, 0xa831c66d, 0x2db43210,
0xb00327c8, 0x98fb213f, 0xbf597fc7, 0xbeef0ee4,
0xc6e00bf3, 0x3da88fc2, 0xd5a79147, 0x930aa725,
0x06ca6351, 0xe003826f, 0x14292967, 0x0a0e6e70,
0x27b70a85, 0x46d22ffc, 0x2e1b2138, 0x5c26c926,
0x4d2c6dfc, 0x5ac42aed, 0x53380d13, 0x9d95b3df,
0x650a7354, 0x8baf63de, 0x766a0abb, 0x3c77b2a8,
0x81c2c92e, 0x47edaee6, 0x92722c85, 0x1482353b,
0xa2bfe8a1, 0x4cf10364, 0xa81a664b, 0xbc423001,
0xc24b8b70, 0xd0f89791, 0xc76c51a3, 0x0654be30,
0xd192e819, 0xd6ef5218, 0xd6990624, 0x5565a910,
0xf40e3585, 0x5771202a, 0x106aa070, 0x32bbd1b8,
0x19a4c116, 0xb8d2d0c8, 0x1e376c08, 0x5141ab53,
0x2748774c, 0xdf8eeb99, 0x34b0bcb5, 0xe19b48a8,
0x391c0cb3, 0xc5c95a63, 0x4ed8aa4a, 0xe3418acb,
0x5b9cca4f, 0x7763e373, 0x682e6ff3, 0xd6b2b8a3,
0x748f82ee, 0x5defb2fc, 0x78a5636f, 0x43172f60,
0x84c87814, 0xa1f0ab72, 0x8cc70208, 0x1a6439ec,
0x90befffa, 0x23631e28, 0xa4506ceb, 0xde82bde9,
0xbef9a3f7, 0xb2c67915, 0xc67178f2, 0xe372532b,
0xca273ece, 0xea26619c, 0xd186b8c7, 0x21c0c207,
0xeada7dd6, 0xcde0eb1e, 0xf57d4f7f, 0xee6ed178,
0x06f067aa, 0x72176fba, 0x0a637dc5, 0xa2c898a6,
0x113f9804, 0xbef90dae, 0x1b710b35, 0x131c471b,
0x28db77f5, 0x23047d84, 0x32caab7b, 0x40c72493,
0x3c9ebe0a, 0x15c9bebc, 0x431d67c4, 0x9c100d4c,
0x4cc5d4be, 0xcb3e42b6, 0x597f299c, 0xfc657e2a,
0x5fcb6fab, 0x3ad6faec, 0x6c44198c, 0x4a475817
]);