blob: 0ac028e472c2542ce945b30599d453c352c3d49d [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
list.of.packages <- c("R.utils")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[, "Package"])]
if( length(new.packages)) install.packages(new.packages, repos = "https://cloud.r-project.org/")
setwd(tempdir())
download.file("http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz", destfile="train-images-idx3-ubyte.gz")
download.file("http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz", destfile="train-labels-idx1-ubyte.gz")
download.file("http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz", destfile="t10k-images-idx3-ubyte.gz")
download.file("http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz", destfile="t10k-labels-idx1-ubyte.gz")
require(R.utils)
gunzip("train-images-idx3-ubyte.gz")
gunzip("train-labels-idx1-ubyte.gz")
gunzip("t10k-images-idx3-ubyte.gz")
gunzip("t10k-labels-idx1-ubyte.gz")
require(mxnet)
# Network configuration
batch.size <- 100
data <- mx.symbol.Variable("data")
fc1 <- mx.symbol.FullyConnected(data, name = "fc1", num_hidden = 128)
act1 <- mx.symbol.Activation(fc1, name = "relu1", act_type = "relu")
fc2 <- mx.symbol.FullyConnected(act1, name = "fc2", num_hidden = 64)
act2 <- mx.symbol.Activation(fc2, name = "relu2", act_type = "relu")
fc3 <- mx.symbol.FullyConnected(act2, name = "fc3", num_hidden = 10)
softmax <- mx.symbol.Softmax(fc3, name = "sm")
dtrain <- mx.io.MNISTIter(
image = "train-images-idx3-ubyte",
label = "train-labels-idx1-ubyte",
data.shape = c(784),
batch.size = batch.size,
shuffle = TRUE,
flat = TRUE,
silent = 0,
seed = 10)
dtest = mx.io.MNISTIter(
image="t10k-images-idx3-ubyte",
label="t10k-labels-idx1-ubyte",
data.shape=c(784),
batch.size=batch.size,
shuffle=FALSE,
flat=TRUE,
silent=0)
mx.set.seed(0)
devices = lapply(1:2, function(i) {
mx.cpu(i)
})
# create the model
model <- mx.model.FeedForward.create(softmax, X=dtrain, eval.data=dtest,
ctx=devices, num.round=1,
learning.rate=0.1, momentum=0.9,
initializer=mx.init.uniform(0.07),
epoch.end.callback=mx.callback.save.checkpoint("chkpt"),
batch.end.callback=mx.callback.log.train.metric(100))
# do prediction
pred <- predict(model, dtest)
label <- mx.io.extract(dtest, "label")
dataX <- mx.io.extract(dtest, "data")
# Predict with R's array
pred2 <- predict(model, X = dataX)
accuracy <- function(label, pred) {
ypred = max.col(t(as.array(pred)))
return(sum((as.array(label) + 1) == ypred) / length(label))
}
print(paste0("Finish prediction... accuracy = ", accuracy(label, pred)))
print(paste0("Finish prediction... accuracy2 = ", accuracy(label, pred2)))
# load the model
model <- mx.model.load("chkpt", 1)
#continue training with some new arguments
model <- mx.model.FeedForward.create(model$symbol, X = dtrain, eval.data = dtest,
ctx = devices, num.round = 5,
learning.rate = 0.1, momentum = 0.9,
epoch.end.callback = mx.callback.save.checkpoint("reload_chkpt"),
batch.end.callback = mx.callback.log.train.metric(100),
arg.params = model$arg.params, aux.params = model$aux.params)
# do prediction
pred <- predict(model, dtest)
label <- mx.io.extract(dtest, "label")
dataX <- mx.io.extract(dtest, "data")
# Predict with R's array
pred2 <- predict(model, X = dataX)
accuracy <- function(label, pred) {
ypred <- max.col(t(as.array(pred)))
return(sum((as.array(label) + 1) == ypred) / length(label))
}
print(paste0("Finish prediction... accuracy=", accuracy(label, pred)))
print(paste0("Finish prediction... accuracy2=", accuracy(label, pred2)))