blob: 784a2dfe825c6d76aee63e54fdde8eb3d01f3525 [file] [log] [blame]
/***************************************************************************
*
Copyright 2012 CertiVox IOM Ltd. *
*
This file is part of CertiVox MIRACL Crypto SDK. *
*
The CertiVox MIRACL Crypto SDK provides developers with an *
extensive and efficient set of cryptographic functions. *
For further information about its features and functionalities please *
refer to http://www.certivox.com *
*
* The CertiVox MIRACL Crypto SDK is free software: you can *
redistribute it and/or modify it under the terms of the *
GNU Affero General Public License as published by the *
Free Software Foundation, either version 3 of the License, *
or (at your option) any later version. *
*
* The CertiVox MIRACL Crypto SDK is distributed in the hope *
that it will be useful, but WITHOUT ANY WARRANTY; without even the *
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
See the GNU Affero General Public License for more details. *
*
* You should have received a copy of the GNU Affero General Public *
License along with CertiVox MIRACL Crypto SDK. *
If not, see <http://www.gnu.org/licenses/>. *
*
You can be released from the requirements of the license by purchasing *
a commercial license. Buying such a license is mandatory as soon as you *
develop commercial activities involving the CertiVox MIRACL Crypto SDK *
without disclosing the source code of your own applications, or shipping *
the CertiVox MIRACL Crypto SDK with a closed source product. *
*
***************************************************************************/
/*
* MIRACL C++ functions big.cpp
*
* AUTHOR : N.Coghlan
* Modified by M.Scott
*
* PURPOSE : Implementation of class Big functions
*/
#include "big.h"
void Big::negate() const
{ negify(fn,fn); }
big Big::getbig() const
{ return fn;}
BOOL Big::iszero() const
{ if (size(fn)==0) return TRUE; return FALSE;}
BOOL Big::isone() const
{ if (size(fn)==1) return TRUE; return FALSE;}
int Big::len() const
{ return numdig(fn); }
Big operator-(const Big& b)
{Big nb; negify(b.fn,nb.fn); return nb;}
Big operator+(const Big& b,int i)
{Big abi; incr(b.fn, i, abi.fn); return abi;}
Big operator+(int i,const Big& b)
{Big aib; incr(b.fn, i, aib.fn); return aib;}
Big operator+(const Big& b1, const Big& b2)
{Big abb;add(b1.fn,b2.fn,abb.fn);return abb;}
Big operator-(const Big& b, int i)
{Big mbi; decr(b.fn, i, mbi.fn); return mbi;}
Big operator-(int i, const Big& b)
{Big mib;decr(b.fn, i, mib.fn);negify(mib.fn,mib.fn);return mib;}
Big operator-(const Big& b1, const Big& b2)
{Big mbb; subtract(b1.fn,b2.fn,mbb.fn); return mbb;}
Big operator*(const Big& b, int i)
{Big xbi; premult(b.fn, i, xbi.fn); return xbi;}
Big operator*(int i, const Big& b)
{Big xib; premult(b.fn, i, xib.fn); return xib;}
Big operator*(const Big& b1, const Big& b2)
{Big xbb; multiply(b1.fn,b2.fn,xbb.fn); return xbb;}
#ifndef MR_STATIC
BOOL fmt(int n,const Big& b1,const Big& b2,Big& f)
{
#ifdef MR_KCM
return kcm_top(n,b1.fn,b2.fn,f.fn); /* see mrkcm.tpl */
#else
return fastmultop(n,b1.fn,b2.fn,f.fn); /* see mrfast.c */
#endif
}
#endif
Big operator/(const Big& b, int i)
{Big dbi; subdiv(b.fn, i, dbi.fn); return dbi;}
Big operator/(const Big& b1, const Big& b2)
{Big dbb; copy(b1.fn,dbb.fn); divide(dbb.fn,b2.fn,dbb.fn); return dbb;}
int operator%(const Big& b, int i)
{Big mdbi; return(subdiv(b.fn,i, mdbi.fn));}
Big operator%(const Big& b1, const Big& b2)
{Big mdbb;copy(b1.fn,mdbb.fn);divide(mdbb.fn,b2.fn,b2.fn);return mdbb;}
Big operator<<(const Big& b, int i)
{Big ms; sftbit(b.fn,i,ms.fn); return ms;}
Big operator>>(const Big& b, int i)
{Big ms; sftbit(b.fn,-i,ms.fn); return ms;}
#ifndef MR_FP
Big land(const Big& x,const Big& y)
{Big z; mr_and(x.fn,y.fn,z.fn); return z;}
Big lxor(const Big& x,const Big& y)
{Big z; mr_xor(x.fn,y.fn,z.fn); return z;}
#endif
Big from_binary(int len,char *ptr)
{Big z; bytes_to_big(len,ptr,z.fn); return z;}
int to_binary(const Big& b,int max,char *ptr,BOOL justify)
{ return big_to_bytes(max,b.fn,ptr,justify);}
Big modmult(const Big& b1,const Big& b2,const Big& m)
{Big z; mad(b1.fn,b2.fn,b2.fn,m.fn,m.fn,z.fn); return z;}
Big mad(const Big& b1,const Big& b2,const Big& b3,const Big& m,Big &r)
{Big q; mad(b1.fn,b2.fn,b3.fn,m.fn,q.fn,r.fn); return q;}
Big norm(const Big& b) {Big z; normalise(b.fn,z.fn); return z;}
Big sqrt(const Big& b) {Big z; nroot(b.fn, 2, z.fn); return z;}
Big abs(const Big& b) {Big z; absol(b.fn,z.fn); return z;}
Big root(const Big &b,int n) {Big z; nroot(b.fn, n, z.fn); return z;}
Big gcd(const Big& b1, const Big& b2){Big z;egcd(b1.fn,b2.fn,z.fn);return z;}
Big pow(const Big& b,int n)
{Big z;int x;
if (mr_abs(x=size(b.fn))<MR_TOOBIG) expint(x,n,z.fn);
else power(b.fn,n,z.fn,z.fn);return z;}
Big pow(const Big& b1,int n, const Big& b3)
{Big z; power(b1.fn,n,b3.fn,z.fn); return z;}
Big pow(int x, const Big& b2, const Big& b3)
{Big z; powltr(x,b2.fn,b3.fn,z.fn); return z;}
Big pow(const Big& b1, const Big& b2, const Big& b3)
{Big z; powmod(b1.fn,b2.fn,b3.fn,z.fn); return z;}
Big pow(const Big& b1,const Big& b2,const Big& b3,const Big& b4,const Big& b5)
{Big z; powmod2(b1.fn,b2.fn,b3.fn,b4.fn,b5.fn,z.fn); return z;}
#ifndef MR_STATIC
void multi_inverse(int m,Big *a,const Big& n,Big *b)
{
int i;
big *x=(big *)mr_alloc(m,sizeof(big));
big *y=(big *)mr_alloc(m,sizeof(big));
for (i=0;i<m;i++)
{
x[i]=a[i].fn;
y[i]=b[i].fn;
}
multi_inverse(m,x,n.fn,y);
mr_free(y); mr_free(x);
}
Big pow(int n,Big *a,Big *b,Big p)
{
Big z;
int i;
big *x=(big *)mr_alloc(n,sizeof(big));
big *y=(big *)mr_alloc(n,sizeof(big));
for (i=0;i<n;i++)
{
x[i]=a[i].fn;
y[i]=b[i].fn;
}
powmodn(n,x,y,p.fn,z.fn);
mr_free(y); mr_free(x);
return z;
}
#endif
Big luc(const Big& b1,const Big& b2,const Big& b3,Big *b4)
{Big z; if (b4!=NULL) lucas(b1.fn,b2.fn,b3.fn,b4->fn,z.fn);
else lucas(b1.fn,b2.fn,b3.fn,z.fn,z.fn);
return z;}
Big inverse(const Big& b1, const Big& b2)
{Big z; xgcd(b1.fn,b2.fn,z.fn,z.fn,z.fn);return z;}
Big moddiv(const Big& b1,const Big& b2,const Big& m)
{Big z; xgcd(b2.fn,m.fn,z.fn,z.fn,z.fn); mad(b1.fn,z.fn,z.fn,m.fn,m.fn,z.fn); return z;}
#ifndef MR_NO_RAND
Big rand(const Big& b) {Big z; bigrand(b.fn,z.fn); return z;}
Big rand(int n,int b) {Big z; bigdig(n,b,z.fn); return z;}
Big randbits(int n) {Big z; bigbits(n,z.fn); return z;}
Big strong_rand(csprng *rng,const Big& b) {Big z; strong_bigrand(rng,b.fn,z.fn); return z;}
Big strong_rand(csprng *rng,int n,int b) {Big z; strong_bigdig(rng,n,b,z.fn); return z;}
#endif
Big nextprime(const Big& b) {Big z; nxprime(b.fn,z.fn); return z;}
Big nextsafeprime(int type,int subset,const Big& b) {Big z;
nxsafeprime(type,subset,b.fn,z.fn); return z; }
Big trial_divide(const Big& b) {Big r; trial_division(b.fn,r.fn); return r;}
BOOL small_factors(const Big& b)
{if (trial_division(b.fn,b.fn)==0) return TRUE; return FALSE;}
BOOL perfect_power(const Big& b)
{int i;
miracl *mip=get_mip();
if (size(b.fn)<4) return FALSE;
for (i=2;;i++)
{
if (nroot(b.fn,i,mip->w8)) return TRUE;
if (size(mip->w8)<=1) break;
}
return FALSE;
}
Big sqrt(const Big& x,const Big& p) {Big z; sqroot(x.fn,p.fn,z.fn); return z;}
void modulo(const Big& n) {prepare_monty(n.fn);}
Big get_modulus()
{Big m;
miracl *mip=get_mip();
copy(mip->modulus,m.fn);
return m;}
Big nres(const Big& b) {Big z; nres(b.fn,z.fn); return z;}
Big redc(const Big& b) {Big z; redc(b.fn,z.fn);return z;}
/*
Big nres_negate(const Big& b)
{ Big z; nres_negate(b.fn,z.fn); return z;}
Big nres_modmult(const Big& b1,const Big& b2)
{ Big z; nres_modmult(b1.fn,b2.fn,z.fn); return z;}
Big nres_premult(const Big& b1,int i)
{ Big z; nres_premult(b1.fn,i,z.fn); return z;}
Big nres_modadd(const Big& b1,const Big& b2)
{ Big z; nres_modadd(b1.fn,b2.fn,z.fn); return z;}
Big nres_modsub(const Big& b1,const Big& b2)
{ Big z; nres_modsub(b1.fn,b2.fn,z.fn); return z;}
Big nres_moddiv(const Big& b1,const Big& b2)
{ Big z; nres_moddiv(b1.fn,b2.fn,z.fn); return z;}
Big nres_pow(const Big& b1,const Big& b2)
{ Big z; nres_powmod(b1.fn,b2.fn,z.fn); return z;}
Big nres_pow2(const Big& b1,const Big& b2,const Big& b3,const Big& b4)
{ Big z; nres_powmod2(b1.fn,b2.fn,b3.fn,b4.fn,z.fn); return z;}
Big nres_pown(int n,Big *a,Big *b)
{
Big z;
int i;
big *x=(big *)mr_alloc(n,sizeof(big));
big *y=(big *)mr_alloc(n,sizeof(big));
for (i=0;i<n;i++)
{
x[i]=a[i].fn;
y[i]=b[i].fn;
}
nres_powmodn(n,x,y,z.fn);
mr_free(y); mr_free(x);
return z;
}
Big nres_luc(const Big& b1,const Big& b2,Big *b3)
{ Big z; if (b3!=NULL) nres_lucas(b1.fn,b2.fn,b3->fn,z.fn);
else nres_lucas(b1.fn,b2.fn,z.fn,z.fn);
return z;}
Big nres_sqrt(const Big& b)
{ Big z; nres_sqroot(b.fn,z.fn); return z;}
*/
Big shift(const Big&b,int n)
{
Big r;
mr_shift(b.fn,n,r.fn);
return r;
}
int length(const Big& b)
{
return mr_lent(b.fn);
}
/* Note that when inputting text as a number the CR is NOT *
* included in the text, unlike C I/O which does include CR. */
#ifndef MR_NO_STANDARD_IO
#ifndef MR_SIMPLE_IO
istream& operator>>(istream& s, Big& x)
{
miracl *mip=get_mip();
#ifndef MR_SIMPLE_BASE
if (mip->IOBASE>60)
{
s.sync();
s.getline(mip->IOBUFF,mip->IOBSIZ);
}
else
#endif
s >> mip->IOBUFF;
if (s.eof() || s.bad())
{
zero(x.fn);
return s;
}
#ifdef MR_SIMPLE_BASE
instr(x.fn,mip->IOBUFF);
#else
cinstr(x.fn,mip->IOBUFF);
#endif
return s;
}
#endif
#endif
// Note new parameter of window_size. Default to 5, but reduce to 4 (or even 3) to save RAM
int window(const Big& x,int i,int *nbs,int *nzs,int window_size)
{ /* returns sliding window value, max. of 5 bits, *
* starting at i-th bit of big x. nbs is number of bits *
* processed, nzs is the number of additional trailing *
* zeros detected. Returns valid bit pattern 1x..x1 with *
* no two adjacent 0's. So 10101 will return 21 with *
* nbs=5, nzs=0. 11001 will return 3, with nbs=2, nzs=2, *
* having stopped after the first 11.. */
return mr_window(x.fn,i,nbs,nzs,window_size);
}
int naf_window(const Big& x,const Big& x3,int i,int *nbs,int *nzs,int store)
{ /* returns sliding window value, max of 5 bits *
* starting at i-th bit of x. nbs is number of bits *
* processed. nzs is number of additional trailing *
* zeros detected. x and x3 (which is 3*x) are *
* combined to produce the NAF (non-adjacent form) *
* So if x=11011(27) and x3 is 1010001, the LSB is *
* ignored and the value 100T0T (32-4-1=27) processed, *
* where T is -1. Note x.P = (3x-x)/2.P. This value will *
* return +7, with nbs=4 and nzs=1, having stopped after *
* the first 4 bits. Note in an NAF non-zero elements *
* are never side by side, so 10T10T won't happen */
return mr_naf_window(x.fn,x3.fn,i,nbs,nzs,store);
}
#ifndef MR_NO_ECC_MULTIADD
void jsf(const Big& k0,const Big& k1,Big& u0p,Big& u0m,Big& u1p,Big& u1m)
{
mr_jsf(k0.fn,k1.fn,u0p.fn,u0m.fn,u1p.fn,u1m.fn);
}
#endif
#ifndef MR_NO_STANDARD_IO
ostream& operator<<(ostream& s, const Big& x)
{
miracl *mip=get_mip();
#if defined(MR_SIMPLE_BASE) || defined(MR_SIMPLE_IO)
otstr(x.fn,mip->IOBUFF);
#else
cotstr(x.fn,mip->IOBUFF);
#endif
s << mip->IOBUFF;
return s;
}
#ifdef MR_FLASH
ostream& otfloat(ostream& s,const Big& m,int e)
{
miracl *mip=get_mip();
copy(m.fn,mip->w5);
convert(1,mip->w6);
copy(mip->w6,mip->w9);
mr_shift(mip->w6,mr_lent(m.fn),mip->w6);
mround(mip->w5,mip->w6,mip->w8);
if (e>=-2 && e<=2)
{
if (e>0)
{
mr_shift(mip->w9,e,mip->w9);
fmul(mip->w8,mip->w9,mip->w8);
}
else
{
mr_shift(mip->w9,-e,mip->w9);
fdiv(mip->w8,mip->w9,mip->w8);
}
#if defined(MR_SIMPLE_BASE) || defined(MR_SIMPLE_IO)
otstr(mip->w8,mip->IOBUFF);
#else
cotstr(mip->w8,mip->IOBUFF);
#endif
s << mip->IOBUFF;
}
else
{
#if defined(MR_SIMPLE_BASE) || defined(MR_SIMPLE_IO)
otstr(mip->w8,mip->IOBUFF);
#else
cotstr(mip->w8,mip->IOBUFF);
#endif
s << mip->IOBUFF;
s << ".2^" << e*MIRACL;
}
return s;
}
#endif
#endif
char* operator<<(char *s,const Big& x)
{
miracl *mip=get_mip();
int i,n;
#if defined(MR_SIMPLE_BASE) || defined(MR_SIMPLE_IO)
n=otstr(x.fn,mip->IOBUFF);
#else
n=cotstr(x.fn,mip->IOBUFF);
#endif
if (s!=mip->IOBUFF) for (i=0;i<=n;i++) s[i]=mip->IOBUFF[i];
return s;
}
void ecurve(const Big& a,const Big& b,const Big& p,int t)
{
ecurve_init(a.fn,b.fn,p.fn,t);
}
BOOL ecurve2(int m,int a,int b,int c,const Big& a2,const Big& a6,BOOL check,int t)
{ return ecurve2_init(m,a,b,c,a2.fn,a6.fn,check,t);}