blob: 64fb1ae39be04a9cf6fb63e8f1994beb2ddf61b7 [file] [log] [blame]
#!/usr/bin/env python3
"""
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
"""
import os
import sys
import json
import unittest
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from amcl import core_utils, mpc
class TestECDSA(unittest.TestCase):
"""Tests MPC ECDSA"""
def test_1(self):
"""test_1 Test MPC ECDSA"""
for i in range(1,11):
print(f"Test {i}")
seed = os.urandom(16)
rng = core_utils.create_csprng(seed)
# Paillier keys
paillier_pk1, paillier_sk1 = mpc.paillier_key_pair(rng)
paillier_pk2, paillier_sk2 = mpc.paillier_key_pair(rng)
# ECDSA keys
PK1, W1 = mpc.mpc_ecdsa_key_pair_generate(rng)
PK2, W2 = mpc.mpc_ecdsa_key_pair_generate(rng)
# Gamma values
GAMMAPT1, GAMMA1 = mpc.mpc_ecdsa_key_pair_generate(rng)
GAMMAPT2, GAMMA2 = mpc.mpc_ecdsa_key_pair_generate(rng)
# K values
K1 = mpc.mpc_k_generate(rng)
K2 = mpc.mpc_k_generate(rng)
# Message
M = b'test message'
# ALPHA1 + BETA2 = K1 * GAMMA2
CA11 = mpc.mpc_mta_client1(rng, paillier_pk1, K1)
CB12, BETA2 = mpc.mpc_mta_server(rng, paillier_pk1, GAMMA2, CA11)
ALPHA1 = mpc.mpc_mta_client2(paillier_sk1, CB12)
# ALPHA2 + BETA1 = K2 * GAMMA1
CA22 = mpc.mpc_mta_client1(rng, paillier_pk2, K2)
CB21, BETA1 = mpc.mpc_mta_server(rng, paillier_pk2, GAMMA1, CA22)
ALPHA2 = mpc.mpc_mta_client2(paillier_sk2, CB21)
# sum = K1.GAMMA1 + alpha1 + beta1
SUM1 = mpc.mpc_sum_mta(K1, GAMMA1, ALPHA1, BETA1)
# sum = K2.GAMMA2 + alpha2 + beta2
SUM2 = mpc.mpc_sum_mta(K2, GAMMA2, ALPHA2, BETA2)
# Calculate the inverse of kgamma
INVKGAMMA = mpc.mpc_invkgamma(SUM1, SUM2)
# Calculate the R signature component
rc, SIG_R, _ = mpc.mpc_r(INVKGAMMA, GAMMAPT1, GAMMAPT2)
# ALPHA1 + BETA2 = K1 * W2
CA11 = mpc.mpc_mta_client1(rng, paillier_pk1, K1)
CB12, BETA2 = mpc.mpc_mta_server(rng, paillier_pk1, W2, CA11)
ALPHA1 = mpc.mpc_mta_client2(paillier_sk1, CB12)
# ALPHA2 + BETA1 = K2 * W1
CA22 = mpc.mpc_mta_client1(rng, paillier_pk2, K2)
CB21, BETA1 = mpc.mpc_mta_server(rng, paillier_pk2, W1, CA22)
ALPHA2 = mpc.mpc_mta_client2(paillier_sk2, CB21)
# sum = K1.W1 + alpha1 + beta1
SUM1 = mpc.mpc_sum_mta(K1, W1, ALPHA1, BETA1)
# sum = K2.W2 + alpha2 + beta2
SUM2 = mpc.mpc_sum_mta(K2, W2, ALPHA2, BETA2)
# Calculate the message hash
HM = mpc.mpc_hash(M)
# Calculate the S1 signature component
rc, SIG_S1 = mpc.mpc_s(HM, SIG_R, K1, SUM1)
# Calculate the S2 signature component
rc, SIG_S2 = mpc.mpc_s(HM, SIG_R, K2, SUM2)
# Sum S signature component
SIG_S = mpc.mpc_sum_s(SIG_S1, SIG_S2)
# Sum ECDSA public keys
rc, PK = mpc.mpc_sum_pk(PK1, PK2)
# Verify final signature
rc = mpc.mpc_ecdsa_verify(HM, PK, SIG_R, SIG_S)
self.assertEqual(rc, 0)
if __name__ == '__main__':
# Run tests
unittest.main()