blob: 04c1c27d65d77246c966b1e3f6e6bf42c0639708 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from abc import ABC, abstractmethod
from typing import Any, List, Optional, Callable, Dict
class BaseLLM(ABC):
"""LLM wrapper should take in a prompt and return a string."""
@abstractmethod
def generate(
self,
messages: Optional[List[Dict[str, Any]]] = None,
prompt: Optional[str] = None,
) -> str:
"""Comment"""
@abstractmethod
async def agenerate(
self,
messages: Optional[List[Dict[str, Any]]] = None,
prompt: Optional[str] = None,
) -> str:
"""Comment"""
@abstractmethod
def generate_streaming(
self,
messages: Optional[List[Dict[str, Any]]] = None,
prompt: Optional[str] = None,
on_token_callback: Callable = None,
) -> List[Any]:
"""Comment"""
@abstractmethod
def num_tokens_from_string(
self,
string: str,
) -> str:
"""Given a string returns the number of tokens the given string consists of"""
@abstractmethod
def max_allowed_token_length(
self,
) -> int:
"""Returns the maximum number of tokens the LLM can handle"""
@abstractmethod
def get_llm_type(self) -> str:
"""Returns the type of the LLM"""