blob: a13641db01d121aa091153bc2e8413db8ee7e595 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from hugegraph_llm.config import LLMConfig
from hugegraph_llm.models.llms.ollama import OllamaClient
from hugegraph_llm.models.llms.openai import OpenAIClient
from hugegraph_llm.models.llms.litellm import LiteLLMClient
from hugegraph_llm.config import llm_settings
def get_chat_llm(llm_configs: LLMConfig):
if llm_configs.chat_llm_type == "openai":
return OpenAIClient(
api_key=llm_configs.openai_chat_api_key,
api_base=llm_configs.openai_chat_api_base,
model_name=llm_configs.openai_chat_language_model,
max_tokens=llm_configs.openai_chat_tokens,
)
if llm_configs.chat_llm_type == "ollama/local":
return OllamaClient(
model=llm_configs.ollama_chat_language_model,
host=llm_configs.ollama_chat_host,
port=llm_configs.ollama_chat_port,
)
if llm_configs.chat_llm_type == "litellm":
return LiteLLMClient(
api_key=llm_configs.litellm_chat_api_key,
api_base=llm_configs.litellm_chat_api_base,
model_name=llm_configs.litellm_chat_language_model,
max_tokens=llm_configs.litellm_chat_tokens,
)
raise Exception("chat llm type is not supported !")
def get_extract_llm(llm_configs: LLMConfig):
if llm_configs.extract_llm_type == "openai":
return OpenAIClient(
api_key=llm_configs.openai_extract_api_key,
api_base=llm_configs.openai_extract_api_base,
model_name=llm_configs.openai_extract_language_model,
max_tokens=llm_configs.openai_extract_tokens,
)
if llm_configs.extract_llm_type == "ollama/local":
return OllamaClient(
model=llm_configs.ollama_extract_language_model,
host=llm_configs.ollama_extract_host,
port=llm_configs.ollama_extract_port,
)
if llm_configs.extract_llm_type == "litellm":
return LiteLLMClient(
api_key=llm_configs.litellm_extract_api_key,
api_base=llm_configs.litellm_extract_api_base,
model_name=llm_configs.litellm_extract_language_model,
max_tokens=llm_configs.litellm_extract_tokens,
)
raise Exception("extract llm type is not supported !")
def get_text2gql_llm(llm_configs: LLMConfig):
if llm_configs.text2gql_llm_type == "openai":
return OpenAIClient(
api_key=llm_configs.openai_text2gql_api_key,
api_base=llm_configs.openai_text2gql_api_base,
model_name=llm_configs.openai_text2gql_language_model,
max_tokens=llm_configs.openai_text2gql_tokens,
)
if llm_configs.text2gql_llm_type == "ollama/local":
return OllamaClient(
model=llm_configs.ollama_text2gql_language_model,
host=llm_configs.ollama_text2gql_host,
port=llm_configs.ollama_text2gql_port,
)
if llm_configs.text2gql_llm_type == "litellm":
return LiteLLMClient(
api_key=llm_configs.litellm_text2gql_api_key,
api_base=llm_configs.litellm_text2gql_api_base,
model_name=llm_configs.litellm_text2gql_language_model,
max_tokens=llm_configs.litellm_text2gql_tokens,
)
raise Exception("text2gql llm type is not supported !")
class LLMs:
def __init__(self):
self.chat_llm_type = llm_settings.chat_llm_type
self.extract_llm_type = llm_settings.extract_llm_type
self.text2gql_llm_type = llm_settings.text2gql_llm_type
def get_chat_llm(self):
if self.chat_llm_type == "openai":
return OpenAIClient(
api_key=llm_settings.openai_chat_api_key,
api_base=llm_settings.openai_chat_api_base,
model_name=llm_settings.openai_chat_language_model,
max_tokens=llm_settings.openai_chat_tokens,
)
if self.chat_llm_type == "ollama/local":
return OllamaClient(
model=llm_settings.ollama_chat_language_model,
host=llm_settings.ollama_chat_host,
port=llm_settings.ollama_chat_port,
)
if self.chat_llm_type == "litellm":
return LiteLLMClient(
api_key=llm_settings.litellm_chat_api_key,
api_base=llm_settings.litellm_chat_api_base,
model_name=llm_settings.litellm_chat_language_model,
max_tokens=llm_settings.litellm_chat_tokens,
)
raise Exception("chat llm type is not supported !")
def get_extract_llm(self):
if self.extract_llm_type == "openai":
return OpenAIClient(
api_key=llm_settings.openai_extract_api_key,
api_base=llm_settings.openai_extract_api_base,
model_name=llm_settings.openai_extract_language_model,
max_tokens=llm_settings.openai_extract_tokens,
)
if self.extract_llm_type == "ollama/local":
return OllamaClient(
model=llm_settings.ollama_extract_language_model,
host=llm_settings.ollama_extract_host,
port=llm_settings.ollama_extract_port,
)
if self.extract_llm_type == "litellm":
return LiteLLMClient(
api_key=llm_settings.litellm_extract_api_key,
api_base=llm_settings.litellm_extract_api_base,
model_name=llm_settings.litellm_extract_language_model,
max_tokens=llm_settings.litellm_extract_tokens,
)
raise Exception("extract llm type is not supported !")
def get_text2gql_llm(self):
if self.text2gql_llm_type == "openai":
return OpenAIClient(
api_key=llm_settings.openai_text2gql_api_key,
api_base=llm_settings.openai_text2gql_api_base,
model_name=llm_settings.openai_text2gql_language_model,
max_tokens=llm_settings.openai_text2gql_tokens,
)
if self.text2gql_llm_type == "ollama/local":
return OllamaClient(
model=llm_settings.ollama_text2gql_language_model,
host=llm_settings.ollama_text2gql_host,
port=llm_settings.ollama_text2gql_port,
)
if self.text2gql_llm_type == "litellm":
return LiteLLMClient(
api_key=llm_settings.litellm_text2gql_api_key,
api_base=llm_settings.litellm_text2gql_api_base,
model_name=llm_settings.litellm_text2gql_language_model,
max_tokens=llm_settings.litellm_text2gql_tokens,
)
raise Exception("text2gql llm type is not supported !")
if __name__ == "__main__":
client = LLMs().get_chat_llm()
print(client.generate(prompt="What is the capital of China?"))
print(
client.generate(
messages=[{"role": "user", "content": "What is the capital of China?"}]
)
)