blob: 69a9555f6f146607f0115d187b7d01f89e38ff8e [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Validates that casting to Decimal works.
#
import pytest
from decimal import Decimal, getcontext, ROUND_DOWN
from metacomm.combinatorics.all_pairs2 import all_pairs2 as all_pairs
from random import randint
from tests.common.impala_test_suite import ImpalaTestSuite
from tests.common.test_vector import TestDimension, TestMatrix
class TestDecimalCasting(ImpalaTestSuite):
"""Test Suite to verify that casting to Decimal works.
Specifically, this test suite ensures that:
- overflows and underflows and handled correctly.
- casts from floats/string to their exact decimal types are correct.
- max/min/NULL/0 can be expressed with their respective decimal types.
"""
DECIMAL_TYPES_MAP = {
# All possible decimal types.
# (0 < precision <= 38 && 0 <= scale <= 38 && scale <= precision)
'exhaustive' : [(p, s) for p in xrange(1, 39) for s in xrange(0, p + 1)],
# Core only deals with precision 6,16,26 (different integer types)
'core' : [(p, s) for p in [6,16,26] for s in xrange(0, p + 1)],
# mimics test_vectors.py and takes a subset of all decimal types
'pairwise' : all_pairs([(p, s) for p in xrange(1, 39) for s in xrange(0, p + 1)])
}
# We can cast for numerrics or string types.
CAST_FROM = ['string', 'number']
# Set the default precisin to 38 to operate on decimal values.
getcontext().prec = 38
# Represents a 0 in decimal
DECIMAL_ZERO = Decimal('0')
@classmethod
def get_workload(cls):
return 'functional-query'
@classmethod
def add_test_dimensions(cls):
cls.TestMatrix = TestMatrix()
cls.TestMatrix.add_dimension(TestDimension('decimal_type',
*TestDecimalCasting.DECIMAL_TYPES_MAP[cls.exploration_strategy()]))
cls.TestMatrix.add_dimension(
TestDimension('cast_from', *TestDecimalCasting.CAST_FROM))
cls.iterations = 1
def setup_method(self, method):
self.max_bigint = int(self.execute_scalar("select max_bigint()"))
def _gen_decimal_val(self, precision, scale):
"""Generates a Decimal object with the exact number of digits as the precision."""
# Generates numeric string which has as many digits as the precision.
num = str(randint(10**(precision - 1), int('9' * precision)))
# Incorporate scale into the string.
if scale != 0: num = "{0}.{1}".format(num[:-scale], num[precision - scale:])
# Convert the generated decimal string into a Decimal object and return a -ive/+ive
# version of it with equal probability.
return Decimal(num) if randint(0,1) else Decimal("-{0}".format(num))
def _assert_decimal_result(self, cast, actual, expected):
assert actual == expected, "Cast: {0}, Expected: {1}, Actual: {2}".format(cast,\
expected, actual)
def _normalize_cast_expr(self, decimal_val, scale, from_string=False):
"""Convert the decimal value to a string litetal to avoid overflow.
If an integer literal is greater than the max bigint supported by Impala, it
overflows. This methods replaces it with a string literal.
"""
if (scale == 0 and abs(decimal_val) > self.max_bigint) or from_string:
return "select cast('{0}' as Decimal({1}, {2}))"
return "select cast({0} as Decimal({1}, {2}))"
def test_min_max_zero_null(self, vector):
"""Sanity test at limits.
Verify that:
- We can read decimal values at their +ive and -ive limits.
- 0 is expressible in all decimal types.
- NULL is expressible in all decimal types
"""
precision, scale = vector.get_value('decimal_type')
from_string = vector.get_value('cast_from') == 'string'
dec_max = Decimal('{0}.{1}'.format('9' * (precision - scale), '9' * scale))
# Multiplying large values eith -1 can produce an overflow.
dec_min = Decimal('-{0}'.format(str(dec_max)))
cast = self._normalize_cast_expr(dec_max, scale, from_string=from_string)
# Test max
res = Decimal(self.execute_scalar(cast.format(dec_max, precision, scale)))
self._assert_decimal_result(cast, res, dec_max)
# Test Min
res = Decimal(self.execute_scalar(cast.format(dec_min, precision, scale)))
self._assert_decimal_result(cast, res, dec_min)
# Test zero
res = Decimal(self.execute_scalar(cast.format(TestDecimalCasting.DECIMAL_ZERO,
precision, scale)))
self._assert_decimal_result(cast, res, TestDecimalCasting.DECIMAL_ZERO)
# Test NULL
null_cast = "select cast(NULL as Decimal({0}, {1}))".format(precision, scale)
res = self.execute_scalar(null_cast)
self._assert_decimal_result(null_cast, res, 'NULL')
def test_exact(self, vector):
"""Test to verify that an exact representation of the desired Decimal type is
maintained."""
precision, scale = vector.get_value('decimal_type')
from_string = vector.get_value('cast_from') == 'string'
for i in xrange(self.iterations):
val = self._gen_decimal_val(precision, scale)
cast = self._normalize_cast_expr(val, scale, from_string=from_string)\
.format(val, precision, scale)
res = Decimal(self.execute_scalar(cast))
self._assert_decimal_result(cast, res, val)
def test_overflow(self, vector):
"""Test to verify that we always return NULL when trying to cast a number with greater
precision that its intended decimal type"""
precision, scale = vector.get_value('decimal_type')
from_string = vector.get_value('cast_from') == 'string'
for i in xrange(self.iterations):
# Generate a decimal with a larger precision than the one we're casting to.
val = self._gen_decimal_val(randint(precision + 1, 39), scale)
cast = self._normalize_cast_expr(val, scale, from_string=from_string)\
.format(val, precision, scale)
res = self.execute_scalar(cast)
self._assert_decimal_result(cast, res, 'NULL')
def test_underflow(self, vector):
"""Test to verify that we truncate when the scale of the number being cast is higher
than the target decimal type (with no change in precision).
"""
precision, scale = vector.get_value('decimal_type')
from_string = vector.get_value('cast_from') == 'string'
if precision == scale:
pytest.skip("Cannot underflow scale when precision and scale are equal")
for i in xrange(self.iterations):
new_scale = randint(scale + 1, precision)
val = self._gen_decimal_val(precision, randint(new_scale, precision))
# We don't need to normalize the cast expr because scale will never be zero
cast = self._normalize_cast_expr(val, scale, from_string=from_string)\
.format(val, precision, scale)
res = Decimal(self.execute_scalar(cast))
# Truncate the decimal value to its target scale with quantize.
self._assert_decimal_result(cast, res, val.quantize(Decimal('0e-%s' % scale),
rounding=ROUND_DOWN))