blob: c807054ec6eedf076139597388bb4b03fff7ae91 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <glog/logging.h>
#include <unistd.h>
#include "testutil/gtest-util.h"
#include "util/blocking-queue.h"
#include "common/names.h"
namespace impala {
/// Functor that returns the size of T.
template <typename T>
struct SizeofFn {
int64_t operator()(const T& item) {
return sizeof(T);
}
};
TEST(BlockingQueueTest, TestBasic) {
int32_t i;
BlockingQueue<int32_t> test_queue(5);
ASSERT_TRUE(test_queue.BlockingPut(1));
ASSERT_TRUE(test_queue.BlockingPut(2));
ASSERT_TRUE(test_queue.BlockingPut(3));
ASSERT_TRUE(test_queue.BlockingGet(&i));
ASSERT_EQ(1, i);
ASSERT_TRUE(test_queue.BlockingGet(&i));
ASSERT_EQ(2, i);
ASSERT_TRUE(test_queue.BlockingGet(&i));
ASSERT_EQ(3, i);
}
TEST(BlockingQueueTest, TestGetFromShutdownQueue) {
int64_t i;
BlockingQueue<int64_t> test_queue(2);
ASSERT_TRUE(test_queue.BlockingPut(123));
test_queue.Shutdown();
ASSERT_FALSE(test_queue.BlockingPut(456));
ASSERT_TRUE(test_queue.BlockingGet(&i));
ASSERT_EQ(123, i);
ASSERT_FALSE(test_queue.BlockingGet(&i));
}
TEST(BlockingQueueTest, TestPutWithTimeout) {
int64_t i;
BlockingQueue<int64_t> test_queue(2);
int64_t timeout_micros = 100 * 1000L; // 100 msecs
ASSERT_TRUE(test_queue.BlockingPutWithTimeout(1, timeout_micros));
ASSERT_TRUE(test_queue.BlockingPutWithTimeout(2, timeout_micros));
boost::system_time now_plus_timeout = boost::get_system_time() +
boost::posix_time::microseconds(timeout_micros);
ASSERT_FALSE(test_queue.BlockingPutWithTimeout(3, timeout_micros));
ASSERT_LE(now_plus_timeout, boost::get_system_time());
ASSERT_TRUE(test_queue.BlockingGet(&i));
ASSERT_TRUE(test_queue.BlockingPutWithTimeout(3, timeout_micros));
}
TEST(BlockingQueueTest, TestBytesLimit) {
// 10 bytes => limit of 2 elements
BlockingQueue<int32_t, SizeofFn<int32_t>> test_queue(1000, 10);
int64_t SHORT_TIMEOUT_MICROS = 1 * 1000L; // 1ms
int64_t LONG_TIMEOUT_MICROS = 1000L * 1000L * 60L; // 1m
// First two should succeed.
ASSERT_TRUE(test_queue.BlockingPut(1));
ASSERT_TRUE(test_queue.BlockingPutWithTimeout(2, SHORT_TIMEOUT_MICROS));
EXPECT_EQ(2, test_queue.Size());
// Put should timeout - no capacity.
ASSERT_FALSE(test_queue.BlockingPutWithTimeout(3, SHORT_TIMEOUT_MICROS));
EXPECT_EQ(2, test_queue.Size());
// Test that puts of both types get blocked then unblocked when bytes are
// removed from queue.
thread put_thread([&] () { test_queue.BlockingPut(4); });
thread put_with_timeout_thread([&] () {
test_queue.BlockingPutWithTimeout(4, LONG_TIMEOUT_MICROS);
});
EXPECT_EQ(2, test_queue.Size());
int32_t v;
EXPECT_TRUE(test_queue.BlockingGet(&v));
EXPECT_EQ(1, v);
EXPECT_TRUE(test_queue.BlockingGet(&v));
EXPECT_EQ(2, v);
EXPECT_TRUE(test_queue.BlockingGet(&v));
EXPECT_EQ(4, v);
EXPECT_TRUE(test_queue.BlockingGet(&v));
EXPECT_EQ(4, v);
put_thread.join();
put_with_timeout_thread.join();
}
template <typename ElemBytesFn>
class MultiThreadTest { // NOLINT: members are not arranged for minimal padding
public:
MultiThreadTest(int64_t bytes_limit = -1)
: iterations_(10000),
nthreads_(5),
queue_(iterations_*nthreads_/10, bytes_limit),
num_inserters_(nthreads_) {
}
void InserterThread(int arg) {
for (int i = 0; i < iterations_; ++i) {
queue_.BlockingPut(arg);
}
{
lock_guard<mutex> guard(lock_);
if (--num_inserters_ == 0) {
queue_.Shutdown();
}
}
}
void RemoverThread() {
for (int i = 0; i < iterations_; ++i) {
int32_t arg;
bool got = queue_.BlockingGet(&arg);
if (!got) arg = -1;
{
lock_guard<mutex> guard(lock_);
gotten_[arg] = gotten_[arg] + 1;
}
}
}
void Run() {
for (int i = 0; i < nthreads_; ++i) {
threads_.push_back(shared_ptr<thread>(
new thread(bind(&MultiThreadTest::InserterThread, this, i))));
threads_.push_back(shared_ptr<thread>(
new thread(bind(&MultiThreadTest::RemoverThread, this))));
}
// We add an extra thread to ensure that there aren't enough elements in
// the queue to go around. This way, we test removal after Shutdown.
threads_.push_back(shared_ptr<thread>(
new thread(bind(
&MultiThreadTest::RemoverThread, this))));
for (int i = 0; i < threads_.size(); ++i) {
threads_[i]->join();
}
// Let's check to make sure we got what we should have.
lock_guard<mutex> guard(lock_);
for (int i = 0; i < nthreads_; ++i) {
ASSERT_EQ(iterations_, gotten_[i]);
}
// And there were nthreads_ * (iterations_ + 1) elements removed, but only
// nthreads_ * iterations_ elements added. So some removers hit the shutdown
// case.
ASSERT_EQ(iterations_, gotten_[-1]);
}
private:
typedef vector<shared_ptr<thread>> ThreadVector;
int iterations_;
int nthreads_;
BlockingQueue<int32_t, ElemBytesFn> queue_;
// Lock for gotten_ and num_inserters_.
mutex lock_;
// Map from inserter thread id to number of consumed elements from that id.
// Ultimately, this should map each thread id to insertions_ elements.
// Additionally, if the BlockingGet returns false, this increments id=-1.
map<int32_t, int> gotten_;
// All inserter and remover threads.
ThreadVector threads_;
// Number of inserters which haven't yet finished inserting.
int num_inserters_;
};
TEST(BlockingQueueTest, TestMultipleThreads) {
MultiThreadTest<ByteLimitDisabledFn<int32_t>> test;
test.Run();
}
TEST(BlockingQueueTest, TestMultipleThreadsWithBytesLimit) {
MultiThreadTest<SizeofFn<int32_t>> test(100);
test.Run();
}
}