blob: 755e4ced1d5ab76a36897637bfa2ffd0ee8ac31b [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <string>
#include <boost/bind.hpp>
#include "runtime/mem-tracker.h"
#include "testutil/gtest-util.h"
#include "util/metrics.h"
#include "common/names.h"
namespace impala {
TEST(MemTestTest, SingleTrackerNoLimit) {
MemTracker t;
EXPECT_FALSE(t.has_limit());
t.Consume(10);
EXPECT_EQ(t.consumption(), 10);
t.Consume(10);
EXPECT_EQ(t.consumption(), 20);
t.Release(15);
EXPECT_EQ(t.consumption(), 5);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
// Clean up.
t.Release(5);
}
TEST(MemTestTest, SingleTrackerWithLimit) {
MemTracker t(11);
EXPECT_TRUE(t.has_limit());
t.Consume(10);
EXPECT_EQ(t.consumption(), 10);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
t.Consume(10);
EXPECT_EQ(t.consumption(), 20);
EXPECT_TRUE(t.LimitExceeded(MemLimit::HARD));
t.Release(15);
EXPECT_EQ(t.consumption(), 5);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
// Clean up.
t.Release(5);
}
/// Exercise individual functions that take MemLimit::SOFT option.
TEST(MemTestTest, SoftLimit) {
MemTracker t(100);
MemTracker child(-1, "", &t);
// Exercise functions that return limits.
EXPECT_EQ(90, t.soft_limit());
EXPECT_EQ(90, t.GetLimit(MemLimit::SOFT));
EXPECT_EQ(100, t.GetLimit(MemLimit::HARD));
EXPECT_EQ(-1, child.soft_limit());
EXPECT_EQ(90, t.GetLowestLimit(MemLimit::SOFT));
EXPECT_EQ(90, child.GetLowestLimit(MemLimit::SOFT));
EXPECT_EQ(100, t.GetLowestLimit(MemLimit::HARD));
// Test SpareCapacity()
EXPECT_EQ(100, t.SpareCapacity(MemLimit::HARD));
EXPECT_EQ(90, t.SpareCapacity(MemLimit::SOFT));
EXPECT_EQ(100, child.SpareCapacity(MemLimit::HARD));
EXPECT_EQ(90, child.SpareCapacity(MemLimit::SOFT));
// Test TryConsume() within soft limit.
EXPECT_TRUE(t.TryConsume(90, MemLimit::SOFT));
EXPECT_FALSE(t.LimitExceeded(MemLimit::SOFT));
EXPECT_FALSE(child.AnyLimitExceeded(MemLimit::SOFT));
// Test TryConsume() going over soft limit.
EXPECT_FALSE(t.TryConsume(1, MemLimit::SOFT));
EXPECT_FALSE(child.TryConsume(1, MemLimit::SOFT));
EXPECT_TRUE(t.TryConsume(1, MemLimit::HARD));
EXPECT_TRUE(t.LimitExceeded(MemLimit::SOFT));
EXPECT_FALSE(child.LimitExceeded(MemLimit::SOFT));
EXPECT_TRUE(t.AnyLimitExceeded(MemLimit::SOFT));
EXPECT_TRUE(child.AnyLimitExceeded(MemLimit::SOFT));
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(child.AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(9, child.SpareCapacity(MemLimit::HARD));
EXPECT_EQ(-1, child.SpareCapacity(MemLimit::SOFT));
// Test Consume() going over hard limit.
child.Consume(10);
EXPECT_TRUE(t.LimitExceeded(MemLimit::SOFT));
EXPECT_TRUE(t.LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(child.LimitExceeded(MemLimit::SOFT));
EXPECT_FALSE(child.LimitExceeded(MemLimit::HARD));
EXPECT_TRUE(t.AnyLimitExceeded(MemLimit::SOFT));
EXPECT_TRUE(t.AnyLimitExceeded(MemLimit::HARD));
EXPECT_TRUE(child.AnyLimitExceeded(MemLimit::SOFT));
EXPECT_TRUE(child.AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(-1, child.SpareCapacity(MemLimit::HARD));
EXPECT_EQ(-11, child.SpareCapacity(MemLimit::SOFT));
t.Release(91);
child.Release(10);
}
TEST(MemTestTest, ConsumptionMetric) {
TMetricDef md;
md.__set_key("test");
md.__set_units(TUnit::BYTES);
md.__set_kind(TMetricKind::GAUGE);
IntGauge metric(md, 0);
EXPECT_EQ(metric.GetValue(), 0);
TMetricDef neg_md;
neg_md.__set_key("neg_test");
neg_md.__set_units(TUnit::BYTES);
neg_md.__set_kind(TMetricKind::GAUGE);
NegatedGauge neg_metric(neg_md, &metric);
MemTracker t(&metric, 100, "");
MemTracker neg_t(&neg_metric, 100, "");
EXPECT_TRUE(t.has_limit());
EXPECT_EQ(t.consumption(), 0);
EXPECT_EQ(neg_t.consumption(), 0);
// Consume()/Release() arguments have no effect
t.Consume(150);
EXPECT_EQ(t.consumption(), 0);
EXPECT_EQ(t.peak_consumption(), 0);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
EXPECT_EQ(neg_t.consumption(), 0);
t.Release(5);
EXPECT_EQ(t.consumption(), 0);
EXPECT_EQ(t.peak_consumption(), 0);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
EXPECT_EQ(neg_t.consumption(), 0);
metric.Increment(10);
// consumption_ is only updated with consumption_metric_ after calls to
// Consume()/Release() with a non-zero value
t.Consume(1);
neg_t.Consume(1);
EXPECT_EQ(t.consumption(), 10);
EXPECT_EQ(t.peak_consumption(), 10);
EXPECT_EQ(neg_t.consumption(), -10);
metric.Increment(-5);
t.Consume(-1);
neg_t.Consume(1);
EXPECT_EQ(t.consumption(), 5);
EXPECT_EQ(t.peak_consumption(), 10);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
EXPECT_EQ(neg_t.consumption(), -5);
metric.Increment(150);
t.Consume(1);
neg_t.Consume(1);
EXPECT_EQ(t.consumption(), 155);
EXPECT_EQ(t.peak_consumption(), 155);
EXPECT_TRUE(t.LimitExceeded(MemLimit::HARD));
EXPECT_EQ(neg_t.consumption(), -155);
metric.Increment(-150);
t.Consume(-1);
neg_t.Consume(1);
EXPECT_EQ(t.consumption(), 5);
EXPECT_EQ(t.peak_consumption(), 155);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
EXPECT_EQ(neg_t.consumption(), -5);
// consumption_ is not updated when Consume()/Release() is called with a zero value
metric.Increment(10);
t.Consume(0);
neg_t.Consume(0);
EXPECT_EQ(t.consumption(), 5);
EXPECT_EQ(t.peak_consumption(), 155);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
EXPECT_EQ(neg_t.consumption(), -5);
// Clean up.
metric.Increment(-15);
t.Consume(-1);
neg_t.Consume(-1);
}
TEST(MemTestTest, TrackerHierarchy) {
MemTracker p(100);
MemTracker c1(80, "", &p);
MemTracker c2(50, "", &p);
// everything below limits
c1.Consume(60);
EXPECT_EQ(c1.consumption(), 60);
EXPECT_FALSE(c1.LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(c1.AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(c2.consumption(), 0);
EXPECT_FALSE(c2.LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(c2.AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(p.consumption(), 60);
EXPECT_FALSE(p.LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(p.AnyLimitExceeded(MemLimit::HARD));
// p goes over limit
c2.Consume(50);
EXPECT_EQ(c1.consumption(), 60);
EXPECT_FALSE(c1.LimitExceeded(MemLimit::HARD));
EXPECT_TRUE(c1.AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(c2.consumption(), 50);
EXPECT_FALSE(c2.LimitExceeded(MemLimit::HARD));
EXPECT_TRUE(c2.AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(p.consumption(), 110);
EXPECT_TRUE(p.LimitExceeded(MemLimit::HARD));
// c2 goes over limit, p drops below limit
c1.Release(20);
c2.Consume(10);
EXPECT_EQ(c1.consumption(), 40);
EXPECT_FALSE(c1.LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(c1.AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(c2.consumption(), 60);
EXPECT_TRUE(c2.LimitExceeded(MemLimit::HARD));
EXPECT_TRUE(c2.AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(p.consumption(), 100);
EXPECT_FALSE(p.LimitExceeded(MemLimit::HARD));
// Clean up.
c1.Release(40);
c2.Release(60);
}
// Test that we can transfer between MemTrackers without temporary double-counting
// in ancestors
TEST(MemTestTest, TransferTo) {
MemTracker root(100);
MemTracker parent(-1, "", &root);
MemTracker uncle(-1, "", &root);
MemTracker child1(-1, "", &parent);
MemTracker child2(-1, "", &parent);
child1.Consume(100);
// To self.
child1.TransferTo(&child1, 100);
EXPECT_EQ(child1.consumption(), 100);
EXPECT_EQ(child1.peak_consumption(), 100);
EXPECT_EQ(parent.consumption(), 100);
EXPECT_EQ(parent.peak_consumption(), 100);
// Child to parent.
child1.TransferTo(&parent, 100);
EXPECT_EQ(child1.consumption(), 0);
EXPECT_EQ(child1.peak_consumption(), 100);
EXPECT_EQ(parent.consumption(), 100);
EXPECT_EQ(parent.peak_consumption(), 100);
// Parent to child
parent.TransferTo(&child1, 100);
EXPECT_EQ(child1.consumption(), 100);
EXPECT_EQ(child1.peak_consumption(), 100);
EXPECT_EQ(parent.consumption(), 100);
EXPECT_EQ(parent.peak_consumption(), 100);
// Child to child.
child1.TransferTo(&child2, 50);
EXPECT_EQ(child1.consumption(), 50);
EXPECT_EQ(child2.consumption(), 50);
EXPECT_EQ(child2.peak_consumption(), 50);
EXPECT_EQ(parent.consumption(), 100);
EXPECT_EQ(parent.peak_consumption(), 100);
// Child to uncle.
child1.TransferTo(&uncle, 50);
EXPECT_EQ(child1.consumption(), 0);
EXPECT_EQ(uncle.consumption(), 50);
EXPECT_EQ(uncle.peak_consumption(), 50);
EXPECT_EQ(parent.consumption(), 50);
EXPECT_EQ(parent.peak_consumption(), 100);
EXPECT_EQ(root.consumption(), 100);
EXPECT_EQ(root.peak_consumption(), 100);
// Child to root
child2.TransferTo(&root, 50);
EXPECT_EQ(child2.consumption(), 0);
EXPECT_EQ(parent.consumption(), 0);
EXPECT_EQ(parent.peak_consumption(), 100);
EXPECT_EQ(root.consumption(), 100);
EXPECT_EQ(root.peak_consumption(), 100);
uncle.Release(50);
root.Release(50);
}
class GcFunctionHelper {
public:
static const int NUM_RELEASE_BYTES = 1;
GcFunctionHelper(MemTracker* tracker) : tracker_(tracker) { }
void GcFunc() { tracker_->Release(NUM_RELEASE_BYTES); }
private:
MemTracker* tracker_;
};
TEST(MemTestTest, GcFunctions) {
MemTracker t(10);
ASSERT_TRUE(t.has_limit());
t.Consume(9);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
// Test TryConsume()
EXPECT_FALSE(t.TryConsume(2));
EXPECT_EQ(t.consumption(), 9);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
// Attach GcFunction that releases 1 byte
GcFunctionHelper gc_func_helper(&t);
t.AddGcFunction(boost::bind(&GcFunctionHelper::GcFunc, &gc_func_helper));
EXPECT_TRUE(t.TryConsume(2));
EXPECT_EQ(t.consumption(), 10);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
// GcFunction will be called even though TryConsume() fails
EXPECT_FALSE(t.TryConsume(2));
EXPECT_EQ(t.consumption(), 9);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
// GcFunction won't be called
EXPECT_TRUE(t.TryConsume(1));
EXPECT_EQ(t.consumption(), 10);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
// Test LimitExceeded(MemLimit::HARD)
t.Consume(1);
EXPECT_EQ(t.consumption(), 11);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
EXPECT_EQ(t.consumption(), 10);
// Add more GcFunctions, test that we only call them until the limit is no longer
// exceeded
GcFunctionHelper gc_func_helper2(&t);
t.AddGcFunction(boost::bind(&GcFunctionHelper::GcFunc, &gc_func_helper2));
GcFunctionHelper gc_func_helper3(&t);
t.AddGcFunction(boost::bind(&GcFunctionHelper::GcFunc, &gc_func_helper3));
t.Consume(1);
EXPECT_EQ(t.consumption(), 11);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
EXPECT_EQ(t.consumption(), 10);
// Clean up.
t.Release(10);
}
}