blob: 7a6083c8d33c8a3e4459fc4e84745dcf34300a88 [file] [log] [blame]
extend ../_components/base.pug
block pagetitle
title Apache Hadoop Performance Acceleration
meta(name="description", content="Achieve the performance acceleration of Hadoop-based systems by deploying Ignite as an in-memory computing platform designated for low-latency, high-throughput and real-time operations while Hadoop continues to be used for long-running OLAP workloads.")
link(rel="canonical", href="https://ignite.apache.org/use-cases/hadoop-acceleration.html")
meta(property="og:title", content="Apache Hadoop Performance Acceleration")
meta(property="og:type", content="article")
meta(property="og:url", content="https://ignite.apache.org/use-cases/hadoop-acceleration.html")
meta(property="og:image", content="/img/og-pic.png")
meta(property="og:description", content="Achieve the performance acceleration of Hadoop-based systems by deploying Ignite as an in-memory computing platform designated for low-latency, high-throughput and real-time operations while Hadoop continues to be used for long-running OLAP workloads.")
block css
link(rel="stylesheet", href="../css/native-persistence.css?ver=" + config.version)
link(rel="stylesheet", href="../css/compute-apis.css?ver=" + config.version)
link(rel="stylesheet", href="../css/digital-hub.css?ver=" + config.version)
link(rel="stylesheet", href="../css/hadoop.css?ver=" + config.version)
block main
- global.pageHref = "usecases"
- config.hdrClassName = "hdr__blue"
include ../_components/header.pug
section.innerhero
.container.innerhero__cont
.innerhero__main
h1.h1.innerhero__h1 Accelerate Existing Hadoop Deployments
<br>
span.with-apache With Apache Ignite
.innerhero__descr.pt-2.h5.
Accelerate the performance of Hadoop-based applications with Ignite <br>as a high-performance data access layer
.innerhero__action
a.button.innerhero__button(href="https://ignite.apache.org/docs/latest/index") Start Coding
img.innerhero__pic.innerhero__pic--hadoop(src="/img/usecases/hadoop/hero-image.svg", alt="hero-image")
// /.innerhero
section.compute2
.container
.doop2__block
h2.compute2__h2 Benefits Of Using Apache Ignite
.compute2__grid.flexi.hub2__grid.doop2__grid
.compute2item.hub2item.doop2__item
.compute2-points__item.fz20
.compute2item__block
h3.fz20.compute2item__title Real-time analytics
p.compute2__text.base2__text Apache Ignite enables real-time analytics across Apache Hadoop operational and historical data silos.
.compute2item.hub2item.doop2__item
.compute2-points__item.fz20
.compute2item__block
h3.fz20.compute2item__title Low-latency and high-throughput operations
p.compute2__text.base2__text Ignite enables low-latency and high-throughput access while Hadoop continues to be used for long-running OLAP workloads.
// /.compute2
section.doop3
.container
.doop3__block.flexi
.doop3__info
h2.doop3__h2.h5 How Does Apache Ignite Acceleration Work?
p.doop3__text To achieve the performance acceleration of Hadoop-based systems, deploy Ignite as a separate distributed storage that maintains the data sets required for your low-latency operations or real-time reports
h2.doop3__h2.h5 There are 3 basic steps:
.fz20.doop3__number 01
p.doop3__subtext Depending on the data volume and available memory capacity, you can enable<a href="/arch/native-persistence.html" target="_blank"> Ignite native persistence</a> to store historical data sets on disk while dedicating a memory space for operational records.
p.doop3__subtext.pt-1 You can continue to use Hadoop as storage for less frequently-used data or for long-running and ad-hoc analytical queries.
.fz20.doop3__number 02
p.doop3__subtext Your applications and services should use Ignite native APIs to process the data residing in the in-memory cluster. Ignite provides SQL, compute (aka. map-reduce), and machine learning APIs for various data processing needs.
.fz20.doop3__number 03
p.doop3__subtext Consider using Apache Spark DataFrames APIs if an application needs to run federated or cross-database queries across Ignite and Hadoop clusters.
p.doop3__subtext.pt-1 Ignite is <a href="/use-cases/spark-acceleration.html" target="_blank">integrated with Spark</a>, which natively supports Hive/Hadoop. Cross-database queries should be considered only for a limited number of scenarios when neither Ignite nor Hadoop contains the entire data set.
img.doop3__image(src="/img/usecases/hadoop/image.svg", alt="image")
// /.doop3
section.doop4
.container
h2.doop4__h2.h4 How Can You Split Data And Operations Between Ignite And Hadoop?
.doop4__block
.doop4__item
p.doop4__text Use Apache Ignite for tasks that require:<br> Low-latency response time <span class="doop4__grey">(microseconds, milliseconds, seconds)</span>
p.doop4__text.pt-1 High-throughput operations <span class="doop4__grey">(thousands and millions of operations per second)</span> <br> Real-time processing
.doop4__item
p.doop4__text Continue using Apache Hadoop for: <br> High-latency operations <span class="doop4__grey">(dozens of seconds, minutes, hours)</span><br>— Batch processing
// /.doop4
section.doop5
.container
h2.h4.doop5__h2 5 Steps To Implement The Architecture In Practice
.doop5__blocks
.doop5__block
.doop5__item.post1
.doop5__number.h4 01
.doop5__title Download and install Apache Ignite to your system.
.doop5__item.post2
.doop5__number.h4 02
.doop5__title Select a list of operations for Ignite.
p.doop5__text.pt-2 The best operations are those that require low-latency response time, high-throughput, and real-time analytics.
.doop5__item.post3
.doop5__number.h4 03
p.doop5__text <span class="doop5__title">Consider enabling Ignite native persistence,</span> or use Ignite as a pure in-memory cache, or in-memory data grid that persists changes to Hadoop or another external database.
.doop5__item.post4
.doop5__number.h4 04
.doop5__title Update your applications
p.doop5__text.pt-2 Ensure they use Ignite native APIs to process Ignite data and Spark for federated queries.
.doop5__item.post5
.doop5__number.h4 05
.doop5__titleend If you need to replicate changes between Ignite and Hadoop clusters, use existing change-data-capture solutions:
.doop5__part.flexi
p Debezium<br>Kafka
p.doop5__middle GridGain Data Lake Accelerator<br>Oracle GoldenGate
p.doop5__end To write-through changes to Hadoop directly,<br> implement <a href="https://ignite.apache.org/docs/latest/persistence/external-storage" target="_blank">Ignite's CacheStore</a> interface.
section.native-bottom.container
.native-bottom__grid
article.nativebotblock
.h4.nativebotblock__title
img(src="/img/features/native-rocket.svg", alt="").nativebotblock__icon
span Ready to Start?
p.nativebotblock__text Discover our quick start guide and build your first<br> application in 5-10 minutes
a.nativebotblock__link.arrowlink(href="https://ignite.apache.org/docs/latest/", target="_blank") Quick Start Guide
article.nativebotblock.nativebotblock--learn
.h4.nativebotblock__title
img(src="/img/features/native-docs.svg", alt="").nativebotblock__icon
span Want to Learn More?
p.nativebotblock__text Read the Apache Spark acceleration article
a.nativebotblock__link.arrowlink(href="/use-cases/spark-acceleration.html") Apache Spark Acceleration Article